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Quantifying the sizes of the damages in structures using guided waves is an emerging technology. It needs a
suitable mathematical model that represents the behavior of the guided waves as they travel through the structure.
Though finite element based theoretical models can provide insight into the behavior, they are computationally
very costly. Spectral element is a promising solution in this regard. Quantifying the damage using a mode-
converted wave based spectral element has not been reported yet. In this work, a spectral element that represents
the characteristics of wave propagation, scattering and mode conversion caused by asymmetric notch-type damage
in an isotropic waveguide is presented. This frequency domain damage-spectral element is formulated through a
combination of three structural waveguides by enforcing appropriate force equilibrium conditions. The spectral
element is able to represent the wave scattering and mode conversion due to the presence of the damage. This
spectral element is employed in analyzing the wave propagation in a beam that has damage and the characteristics
obtained are in agreement with the results expected based on time-of-flight calculations and those obtained using
the finite element method. The relation between the depth of the damage and the magnitude of the mode-converted
wave for notch-type damage is established using this spectral element and compared with the experimental result.
Usage of the same spectral element in quantifying the length of the damage based on the reflections of the primary
propagating wave from the damage ends is also demonstrated.

NOMENCLATURE

A Area of cross-section
Ao Fundamental anti-symmetric wave mode
a Column vector of coefficients for describing

the displacement
b Width of the beam
C1, C2, C3,
C4, C5, C6

Coefficients used in describing the displace-
ment

d Depth of the notch
E Young’s modulus of the material
F Transverse force, a column vector
F̂e Fourier coefficient of element force, a col-

umn vector
h Thickness of the beam
h1 Offset of beam axis
I Area moment of inertia of the cross-section
kr, k1, k2 Wavenumbers
K Dynamic stiffness matrix
L Length of the beam
L1, L2, L3 Length of beam segments
M̂ Spectral load, moment
N Total number of FFT points
N̂ Spectral load, axial
So Fundamental symmetric wave mode

t Time
T1, T2 Matrices relating displacement / force to the

coefficients Ci

u Axial displacement
u̇ Axial velocity
û Fourier coefficient of axial displacement
U Displacement field, a column vector
Û Fourier coefficient of displacement field, a

column vector
Ûe Fourier coefficient of element displacement,

a column vector
v Transverse displacement
v̇ Transverse velocity (m/s)
v̂ Fourier coefficient of transverse displace-

ment
V̂ Spectral load, shear
λ Wavelength
µ Micro unit
ϕ Angular displacement
ϕ̂ Fourier coefficient of rotational displace-

ment
ωn Circular frequency
ρ Density of the material
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1. INTRODUCTION

Structural health monitoring (SHM) using techniques that
are based on ultrasonic guided waves is promising due to its
ability to inspect large structures over long distances with a
small number of transducers. One of the commonly observed
defects in many structural components is the surface damage
like cracks, notches etc. These defects are asymmetrically lo-
cated along the structural depth direction. When the guided
waves interact with these asymmetric discontinuities, a mode
conversion occurs.1–3 Hosseini et al.4 have proposed a new
SHM approach based on the mode conversion phenomenon to
detect small damages in cellular plate structure by employing
high frequency guided waves. This method uses Time of Flight
(ToF) calculation of the converted mode for possible damages.
Patnaik et.al.5 demonstrated the convenience of using a mode-
converted wave in locating damage in an aerospace structure.
In a recent work,6 mode-conversion of guided waves in Glass
Fiber Reinforced Polymer (GFRP) is used to identify fatigue
damage accumulation. Among the various parameters stud-
ied, it was observed that the matrix-crack density majorly con-
tributes to the mode-conversion effect and results were found
to be remarkably useful in composite fatigue life evaluation.
In many occasions, the damage detection is done by compari-
son with the image obtained without the presence of the dam-
age. Zhang et al.7 developed an accurate damage detection
imaging approach by utilizing the mode-converted wave with-
out needing a baseline image. The Probability-based Diag-
nostic Imaging (PDI) method is integrated with the Converted
Mode Extraction (CME) technique and the Damage Index (DI)
is obtained based on the time-domain energy of the converted
mode.

In addition to the location of the damage, information on
the size of the damage is also essential for any SHM program.
When a mode-converted wave is used for detecting the dam-
age, it is advisable to use the features of the converted wave
itself for quantifying the damage too. However, studies on the
quantification of damage based on the characteristics of the
mode-converted wave are seldom reported.5 This work is an
attempt in shedding more light on these types of studies.

To assess the size of the damage, one needs to establish a re-
lation between the magnitude of the mode-converted wave and
the size of the damage. The relation should be experimentally
proven. Obtaining these relations experimentally for various
values of the sizes of the damages is a cumbersome process as
a large number of tests needs to be performed. Therefore, a
practical approach is to have a mathematical model that rep-
resents the mode conversion aspect and then determine the re-
lation through simulations for various values of the size of the
damage. A validation of the theoretical curve thus obtained can
be done for specific sizes of the damage through experimental
results.

Theoretical modeling of damages like surface cracks has
been done using analytical and semi-analytical methods. In
these works,8–10 the damage is detected based on the changes
in natural frequencies and mode shapes. A similar tech-
nique has been applied using FE and mode synthesis for de-
tecting cracks in beams11, 12 and delaminations in composite
beams.13, 14 As a noticeable change in the natural frequencies

will be seen in higher order modes, a change in the character-
istics of the propagation of waves is a more suitable method
than change in the natural frequency to detect damage.

Wave propagation in various structural elements like 1-D
waveguides (rods, beams), 2-D waveguides as platelike struc-
tures has been studied in detail for a considerable period. Var-
ious continuum models15, 16 and discrete models17–19 of wave
propagation were developed and employed. Analytical solu-
tions for the scattering of the guided waves due to damage in
the structure are difficult to obtain. Numerical methods like
the Finite Element method (FEM), Boundary Element Method
(BEM) are suitable for solving wave propagation problems.
Cho20 has utilized the hybrid BEM along with the experimen-
tal phase velocity concept for capturing the mode-conversion
phenomenon in a plate having varying thickness. In this study,
it is noted that a waveguide with symmetric variation in thick-
ness causes mode-conversion within the modes of the fam-
ily whereas, in the case of an asymmetric thickness variation,
mode-conversion occurs in a different mode family. Discrete
models have the advantage of modeling complex geometries
and boundary conditions but suffer from various issues asso-
ciated with proper spatial discretization required for solving
wave propagation problems and are computationally expen-
sive. Studies conducted in literature21, 22 capture the mode con-
version phenomena in several delaminated composite beams
using 3D FE models and involve significant computational
time. Patnaik et al.5 attempted to quantify the damage using
the mode-converted wave. The relation between the magnitude
of the wave and the size of the damage is obtained through
FEM. Due to the large size of the model, FEM is not a vi-
able solution and hence the above relation is obtained only for
a few sizes of the damages. Among many discrete methods
employed for modeling the phenomenon of wave propagation
in structures, the Spectral Element Method (SEM) is an effec-
tive and convenient tool. The frequency based Spectral Finite
Element Method (SFEM) was developed by Doyle19, 23 and is
widely in use.

Analysis of wave propagation in a cracked rod,24 a cracked
beam25 and a plate with a crack26 by SEM was studied in which
the crack in the structural members was modeled as a dimen-
sionless spring. The changes in the modal parameters are uti-
lized to identify the presence of a crack and its location. The
lacuna with the above method of modeling is that it doesn’t
represent the wave scattering at the damage edges and mode
conversion. It has been reported that in case of large damage,
wave reflections would occur from both ends of the damage,
which is not represented in these models.27

A damage-spectral element with embedded through-width
delamination is developed to study the wave propagation in a
composite beam28 and the results are compared with the FEM.
However, in this work, the damage quantification is not ad-
dressed, and also the mode conversion is not discussed. Hu
et al.29 proposed a cracked spectral element based on SEM
and verified its wave propagation and damage features by con-
ventional FEM results. Here the reflection and transmission
wave coefficients are used for damage feature extraction and
the mode-converted wave is not considered. It is seen that
though there are several spectral elements that can represent
wave propagation characteristics, spectral elements that ad-
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dress the mode conversion phenomena when the wave inter-
acts with the damage are not frequently reported. He and Ng1

and Carnam et al.30 present spectral elements formulated in
the time domain, that simulate scattering and mode conversion
but are not convenient when a large number of computations
need to be completed. A frequency based spectral element is
more convenient for the analysis and interpretation. As most
of the damages encountered in practice are asymmetric and
mode conversion of the guided waves occurs when they reach
a damage, there is a need to develop a spectral element that
represents this behavior and can be employed for damage iden-
tification and quantification.

In this work, a frequency domain spectral element that mod-
els a notch-type of damage located asymmetrically in the thick-
ness direction of an isotropic beam is presented. The element
formulation models the damage zone and the surrounding in-
tegral regions as one waveguide. Enforcing the equilibrium
at the interface and employing appropriate kinematic bound-
ary conditions reduce to a single element that represents em-
bedded damage. The results of the damage-spectral element
are validated by FEM simulations. The damage-spectral ele-
ment is then used in quantifying the depth and length of the
damage. The relation between the amplitude of the mode-
converted wave and the depth of the damage is presented for
a typical isotropic beam and compared with experimental re-
sults.

2. 1D DAMAGE-SPECTRAL ELEMENT

SEM has been established as a powerful tool for analyzing
the propagation of waves in structures. SEM combines the high
accuracy of the conventional spectral methods with the advan-
tages of the FEM.16, 23 The spectral element approach is based
on the global approximation of analyzed functions using ba-
sis functions and then with precision solving the differential
equation. As a result, the analysis can be computed with a few
elements without losing accuracy.

In the frequency-based SEM, the governing differential
equations are first transformed from the time domain to the
frequency domain using Discrete Fourier Transform (DFT).
Fast Fourier Transform (FFT) is used for computational imple-
mentation. This transformation changes the Partial Differential
Equations (PDEs) into a set of Ordinary Differential Equations
(ODEs) having frequency as a variable. The spatial variation
is obtained by solving the characteristic equation in k-space
(wavenumber space). This results in a complex dynamic shape
function matrix as a linear superposition of all the wave modes.
Following the conventional FE method, the global dynamic
stiffness matrix is formed which is exact. The global system is
solved for the spectral amplitude of the applied load history at
each frequency. By performing inverse FFT, the time domain
response is obtained.

2.1. Beam Spectral Element
Consider a rectangular beam of length L, thickness h and

width b, as shown in Fig. 1. The displacement field at a point
has three components, namely the longitudinal displacement
u(x, t), the transverse displacement v(x, t) and the rotation of
the cross-section of the beam φ(x, t) which are all functions

Figure 1. Beam element with coordinate system and degrees of freedom.

of x and time. The displacement field can be represented by a
column vector U(x, t) as:

U(x, t) = {u(x, t), v(x, t), φ(x, t)}T . (1)

Using Fourier Transform, the displacement u(x, t), can be
written as:

u(x, t) =

N∑
1

û(x, ωn)e
iωnt; (2)

where ωn is the circular frequency and N is the number of
points taken for FFT. Function û(x, ωn) is the Fourier coeffi-
cient at frequency ωn for the displacement at x.

Similarly, other displacements can also be defined and the
Fourier components in the column vector form is:

Û(x, ωn) = {û(x, ωn), v̂(x, ωn), φ̂(x, ωn)}T . (3)

The displacement field can now be represented by the col-
umn vector:

U(x, t) =

N∑
1

Û(x, ωn)e
iωnt. (4)

The Fourier coefficients will be of the form:20

û(x) = C1e
−ikrx + C4e

−ikr(L−x); (5)

v̂(x) = C2e
−ik1x + C3e

−ik2x + C5e
−ik1(L−x) +

C6e
−ik2(L−x); (6)

φ̂(x) =
∂v̂(x)

∂x
; (7)

where C1, C2, C3, C4, C5, and C6 are determined from the
boundary conditions.

Substituting the expressions for the field variables given by
Eq. (4) in the governing differential equation of a beam with an
axial load,20 the wavenumbers kr, k1 and k2 can be obtained
as:

kr = ωn

√
ρ

E
; (8)

k1 = ±
√
ωn

(
ρA

EI

)1/4

; k2 = ±i
√
ωn

(
ρA

EI

)1/4

; (9)

where E denotes Young’s modulus and ρ the density of the
material. Cross-section of the beam has an area of A and its
second moment of area is I . The imaginary unit is represented
by i =

√
−1.

With known wavenumbers at a particular frequency ωn, the
generalized displacements at the nodes of the 1-D element
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(having nodes-1 and 2) can be expressed in the form

û(0, ωn)
v̂(0, ωn)
φ̂(0, ωn)
û(L, ωn)
v̂(L, ωn)
φ̂(L, ωn)


= Ûe = [T1]{a}. (10)

Elements of [T1] are as per Eqs. (5) to (7), evaluated at the
given frequency. It is a 6× 6 non-symmetric and non-singular
matrix. As [T1] is a matrix with several expressions,20 it is
not reproduced here for brevity. The column vector {a} is the
unknown coefficient vector at the same frequency, given as:

{a} = {C1, C2, C3, C4, C5, C6}T . (11)

The nodal spectral loads for the element, N̂→ axial,V̂→
shear and M̂→ bending moment can be determined by differ-
entiating the spectral displacement with respect to x. Using
appropriate relationships, they can be expressed as:

N̂1

V̂1

M̂1

N̂2

V̂2

M̂2


= F̂e = [T2]{a}. (12)

The matrix [T2] has similar properties as those of [T1].
Finally, the nodal forces and nodal displacements can be re-

lated and the dynamic stiffness matrix of the beam spectral
element can be written as

F̂e = [T2][T1]
−1Ûe = [Ke]Ûe. (13)

The matrix [Ke] is the spectral element dynamic stiffness
matrix, which is of size 6× 6.

SFEM provides a methodology to make the wave propaga-
tion analysis suitable for incorporation in the framework of
the FEM23, 31 and facilitates the global matrix assembly. The
displacement field variables are derived at various frequency
points and the time domain response is obtained by using an
inverse DFT. A single node semi-infinite spectral element can
be incorporated by choosing L = ∞ in Eqs. (5) and (6). Re-
flection at the fixed boundary can be represented by assigning
a large value for E.23, 32

2.2. Spectral Element for Embedded
Damage

The spectral element representing the characteristics of the
waves traveling across a damage is referred to here as the
damage-spectral element. It has two nodes, namely node-1
and node-2. The element covers the damage and the region on
both sides of the damage.

For developing the damage-spectral element, the beam is
subdivided into three regions, namely the damage region of
length L3 and two integral regions of length L1 and L2 of
thickness h on either side of the damage region as shown in
Fig. 2. The depth of the notch is d. Each region is modeled as

Figure 2. Beam with notch: the damage zone modeled by 1-D beam
waveguides.

a beam spectral element as described in Section 2.1 to arrive at
the damage-spectral element.

The notch zone of the beam is represented by element-3,
whose axis is offset from the beam axis by h1. The length
of this element is equal to the notch length L3. Portions of
the beam adjacent to the notch are modeled as element-1 and
element-2 of length L1 and L2 respectively. The formulation
is such that the nodes 3, 4, 5 and 6 will be internally eliminated
and only nodes 1 and 2 will be remaining. It is to be noted that
whether damage is present or not, there will be only one ele-
ment connecting the nodes 1 and 2. In the absence of damage,
a beam spectral element will connect the nodes whereas the
damage-spectral element developed in this work can be used
to connect the nodes, if there is damage.

Using the dynamic stiffness matrix for the beam as given
by Eq. (13) and applied to jth element of the damage-spectral
element (j = 1, 2, 3) gives:

[Kj ]Ûj = F̂j . (14)

For convenience, the dynamic stiffness matrix which is 6×6
is partitioned into 4 matrices, each of size 3× 3. The displace-
ment vector and the force vector are partitioned into two ma-
trices of size 3× 1, the top one representing the displacements
and forces at the first node and the bottom one representing the
same at the second node. Thus, for the jth element with p and q
representing the first and the second node, the set of equations
becomes: [

Kj
11 Kj

12

Kj
21 Kj

22

]{
Ûp

Ûq

}
=

{
F̂p

F̂q

}
. (15)

For the first element p and q are 1 and 3, for the second
element p and q are 4 and 2, and for the third element p and
q are 5 and 6. At this stage, there are 18 (6 for each element)
displacement variables.

Transverse displacement and slope at node-5 are the same as
those at node-3 and similarly at node-6 and node-4. This leads

308 International Journal of Acoustics and Vibration, Vol. 29, No. 3, 2024



M. N. M. Patnaik, et al.: DAMAGE QUANTIFICATION USING MODE CONVERTED GUIDED WAVE BASED 1D DAMAGE-SPECTRAL ELEMENT

Figure 3. Force balance at the interface of the damage.

to the following conditions:

Û5 =


û5

v̂5
φ̂5

 =


û3 − h1ϕ3

v̂3
φ̂3

 = S1Û3; (16)

Û6 =


û6

v̂6
φ̂6

 =


û5 − h1ϕ5

v̂5
φ̂5

 = S1Û4; (17)

where S1 =

1 0 −h1

0 1 0
0 0 1

 . (18)

Force balance at the left side of the notch, shown in Fig. 3,
gives the following relations:

N̂3

V̂3

M̂3

+


N̂5

V̂5

M̂5

+


0
0

−h1N̂5

 =


0
0
0

 . (19)

This can be expressed in the matrix form as

F̂3 + ST
1 F̂5 = 0. (20)

Similar force balance at the right side of the notch leads to

F̂4 + ST
1 F̂6 = 0. (21)

Consider spectral element-3 and applying the relations as per
Eq. (15) [

K3
11 K3

12

K3
21 K3

22

]{
Û5

Û6

}
=

{
F̂5

F̂6

}
. (22)

Pre-multiplying on both sides of Eq. (22) by ST
1 and ex-

pressing Û5 and Û6 in terms of Û3 and Û4:[
ST
1 K

3
11S1 ST

1 K
3
12S1

ST
1 K

3
21S1 ST

1 K
3
22S1

]{
Û5

Û6

}
=

{
ST
1 F̂5

ST
1 F̂6

}
. (23)

The forces F̂5 and F̂6 are related to F̂3 and F̂4 as per
Eq. (20) and Eq. (21) and hence Eq. (23) can be expressed
as: [

ST
1 K

3
11S1 ST

1 K
3
12S1

ST
1 K

3
21S1 ST

1 K
3
22S1

]{
Û5

Û6

}
=

{
−F̂3

−F̂4

}
. (24)

Writing the governing equations for element-1 and 2 in the
form of Eq. (15) and those of element-3 in the form of Eq. (24)
and then assembling them leads to the set of equations in the
form:
K1

11 K1
12 0 0

K1
21 K1

22+ST
1 K

3
11S1 ST

1 K
3
12S1 0

0 ST
1 K

3
21S1 K2

11+ST
1 K

3
22S1 K2

21

0 0 K2
21 K2

22



Û1

Û3

Û4

Û2

 =


F̂1

0
0

F̂2

 . (25)

Figure 4. Schematic of the beam with notch.

While forming the above, F̂3 and F̂4 vanish as there are no
external forces at these nodes.

Eliminating the internal degrees of freedom of Û3 and Û4

by static condensation,33 we get:

[K]6×6

{
Û1

Û2

}
=

{
F̂1

F̂2

}
; (26)

where [K] is the stiffness matrix for the damage-spectral ele-
ment.

This damage-spectral element can be implemented in
MATLAB® and can be incorporated at the damage zone along
with the normal beam elements. Results of the wave propaga-
tion analysis done using this element are given subsequently.

The spectral elements reported so far are for delamination
in composite laminates and not for surface defects like notch.
Also, the work reported27, 28 do not address the mode conver-
sion. The damage-spectral element presented here models sur-
face defects and represents the mode conversion of the primary
propagating wave. The developed element is later applied for
quantifying the depth and length of the damage.

3. WAVE PROPAGATION IN BEAM HAVING
DAMAGE

Wave scattering and mode conversion generated by damage
in an isotropic beam are analyzed using the developed damage-
spectral element to verify its performance. The element for-
mulation is implemented in MATLAB® and numerical simu-
lations are carried out. The results obtained using the spec-
tral element are compared with the expected results which are
based on ToF and validated by FEM.

3.1. Details of the Beam
A cantilevered beam of length 1 m and having a through-

width notch-type damage, as shown in Fig. 4, is considered.
The width of the beam is 35 mm and the thickness is 2 mm.
The damage is in the form of a through-width notch having a
length of 6 mm and depth of 1 mm, as shown in Fig. 4. The
damage is located at a distance of 700 mm from the fixed end
of the beam. A transverse force F which is a modulated sine
pulse of five cycles at a frequency of 120 kHz and amplitude of
1 N, as shown in Fig. 5, is applied at the free end of the beam.

The response at A and B located at a distance of 400 mm
and 865 mm respectively from the fixed end are studied for
wave scattering and mode conversion caused by the damage.
These locations are on either side of the damage. Location B
is at a distance of 165 mm and location A is at a distance of
300 mm from the damage.
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Figure 5. Excitation pulse at 120 kHz.

Figure 6. Spectral finite element model of the beam with notch.

3.2. Spectral Element Model
Ideally, the entire beam can be modeled by a single damage-

spectral element to capture the wave propagation and scatter-
ing due to the damage. However, to obtain responses at specific
nodes, the beam is discretized into three elements as shown in
Fig. 6, where element-2 is the damage-spectral element devel-
oped in this work. To simulate the fixed conditions at one end,
a throw-off element having a high value of Young’s modulus
of elasticity is assumed. A transverse force pulse, as shown in
Fig. 5 is applied at node-4 and the velocity response at nodes-
2 and 3 (corresponding to points A and B on the beam) are
analyzed. Results are obtained for cases of the beam without
damage and with the presence of the damage.

3.3. Results Using Spectral Element
The transverse velocity response (v̇) at node-3 of the beam

having the damage is shown in Fig. 7, superimposed on the
response of the beam without having the damage. Since the
excitation of the beam is by a transverse force, fundamental
anti-symmetric wave (A0 mode) is generated, which is the in-
cident wave pulse-1. In the case of the beam without the dam-
age, the velocity response shows the incident fundamental anti-
symmetric, Ao wave (pulse-1) and the A0 wave reflected from
the beam fixed end (pulse-7), whereas the response of the beam
having the damage has several additional reflected wave pulses
from the damage as well as the free end of the beam (pulse: 2-
6).

The paths of the waves traveling along the beam are
schematically shown in Fig. 8. The length of the notch is 6 mm
but for clarity of visualization the notch is shown larger and it
is not to scale. As the propagating wave frequency is 120 kHz,
there is only one wave pulse reflecting from the other end of
the damage and hence the waves from the two ends of the crack

Figure 7. Transverse velocity response at node-3.

Figure 8. Schematic of path of wave pulse reaching node-3 (point B).

are not distinguishable. To avoid several waves being shown,
reflection from the damage is indicated to be at the center of
the damage which is only for representation. The group veloc-
ity of Ao mode at 120 kHz generated in the beam is calculated
as 2950 m/s and that of So is 5000 m/s.

Consider the results at node-3 of the pristine beam. It is
to be noted that the pulse is initiated at 100 µs. As per the
results using the spectral element, the pulse arrives at node-3
at 143 µs. Based on the speed of the wave and the distance of
node-3 from the point of excitation, the Ao wave is expected to
reach node-3 at 146 µs. The Ao wave travels past node-3 and
it is expected to arrive back at node-3 after a reflection at the
fixed end. Considering the speed of this wave and the distance
traveled by this wave, the pulse is expected at 585 µs after the
first pulse which is at 731 µs. The response computed using
the spectral element shows the arrival of this pulse at 738 µs.
The results show that the spectral element correctly represents
the wave transmission in the pristine beam.

Let us now consider the results of the beam having the dam-
age. Pulse-1 is the incident A0 wave pulse and pulse-7 is the
A0 wave that reflected from the fixed end. The wave pulses-2,4
and 6 are expected to be the first, second and third reflections
of Ao from the damage, whereas pulses-3 and 5 are the waves
reflected (same as incident Ao and not newly generated) from
the free end of the beam. As node-3 is at a distance of 165 mm
from the damage, it is expected that the pulse-2 will arrive at
258 µs and pulse-3 at 349 µs and so on. It can be seen from
the results shown in Fig. 7 that the damage-spectral element
developed here represents accurately the wave transmission in
a beam having damage.

One important characteristic of wave propagation around
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Figure 9. Axial velocity response at node-3.

Figure 10. Transverse velocity response at node-2.

an asymmetrically located damage is the mode conversion.1–3

The Ao mode upon interaction with the notch-type damage
generates So mode, which also propagates in the beam. Owing
to the difference in their group velocities, the mode-converted
So mode is distinct and doesn’t interact with the Ao mode. As
it is a longitudinal mode, its presence can be well revealed by
the axial velocity response. The axial velocity (u̇) at node-3
computed using the spectral element is shown in Fig. 9. The
incident wave will not be seen as it has no axial component.
The first wave pulse corresponds to the mode-converted So

wave that originated from the damage and traveled to node-
3. Further wave pulses seen are their reflections from the free
end of the beam and the reflections from the damage as could
be expected from Fig. 8. As it is a So wave, the first pulse
in Fig. 9 (marked as 2 in the figure) should arrive at 235 µs
and the second pulse at 289 µs. The results obtained using the
spectral element, shown in Fig. 9, are in very good agreement
with the ToF calculations. Thus, it can be seen that the devel-
oped damage-spectral element represents the mode conversion
caused by asymmetrically located damage.

The transverse and axial velocities at node-2 (point A) are
also computed, shown in Figs. 10 and 11, respectively. In the
transverse velocity response, the first pulse arriving at node-2
should be the incident Ao wave and hence it should appear at

Figure 11. Axial velocity response at node-2.

304 µs. The response estimated using the spectral element is
in agreement with this. The second pulse is that reflected from
the fixed end.

For the axial velocity response, as the mode-converted So

wave generated at the damage has a higher group velocity, it
reaches node-2 at 262 µs which is prior to the arrival of prop-
agating Ao mode. This behavior is clearly shown by the axial
velocity response estimated using the developed spectral ele-
ment, shown in Fig. 11.

Thus, it is noted that the spectral element developed in this
work represents the wave propagation characteristics in a beam
having surface damage. It represents the mode conversion of
the guided wave which is caused due to the damage.

4. VALIDATION BY FEM

It is shown in Section-3 that the developed spectral element
represents the mode conversion caused by asymmetrical dam-
age and its correctness was verified through the time-of-flight
calculations. Here, the responses obtained from the damaged
spectral element are compared with the conventional FEM re-
sults and subsequently, the damage-spectral element is used for
damage quantification.

The beam described in Section 3.1 is modeled in conven-
tional FEM using 1D-beam elements consisting of 4000 ele-
ments. The size of the element is selected such that to have
a fine mesh to model the notch length of 6 mm and to accu-
rately capture the amplitude of the mode-converted wave. The
length of the element is about 0.25 mm. A point load is applied
at the free end node of the cantilever in the form of the pulse
as shown in Fig. 5 and transient response analysis is carried
out. The FE model of the beam idealized with element offset
is shown in Fig. 12. A zoomed-in view of the notch zone can
also be seen in Fig. 12. The responses are obtained at loca-
tions A and B. The locations are shown in Fig. 4. It is noted
that the beam of 1 m length is represented by three elements
in the SEM model whereas the FEM model has around 4000
elements.

Figure 13 shows the transverse velocity response at location
A obtained from FEM and compared with the correspond-
ing response using the damage-spectral element. This shows
a good match at a location beyond the damage along the wave

International Journal of Acoustics and Vibration, Vol. 29, No. 3, 2024 311



M. N. M. Patnaik, et al.: DAMAGE QUANTIFICATION USING MODE CONVERTED GUIDED WAVE BASED 1D DAMAGE-SPECTRAL ELEMENT

Figure 12. FE model of the beam.

Figure 13. Transverse velocity at location A using damage-spectral element
and FEM.

transmission path and validates the formulation of the damage-
spectral element. As this spectral element is to represent the
mode conversion, the most important response to be verified is
the axial response, shown in Fig. 14 for location B (node-3 of
SEM).

The instances of arrival time of the So wave and its am-
plitudes match very well, proving the ability of the damage-
spectral element to capture the wave scattering due to the dam-
age. The results have some differences between 100 µs and
220 µs. As FFT and inverse FFT are involved, the time do-
main response by SEM shows computational noise. However,
this is less than 8 percent of the peak amplitude of the mode-
converted wave. The situation can be improved by considering
a slightly higher number of FFT points.

5. DAMAGE QUANTIFICATION USING SEM

The amplitude of the mode-converted wave is influenced by
the size of the damage. If the relation between them can be es-
tablished, the quantification of the damage in the given struc-
ture can be inferred from the measured amplitude of the mode-
converted wave. The relations between the amplitude of the
mode-converted guided wave and the size of the notch have
been now obtained using the damage-spectral element.

Figure 14. Axial velocity at location B using damage-spectral element and
FEM.

Figure 15. Axial velocity response for varying notch depth.

5.1. Quantification of Notch Depth
Simulations are carried out for various notch depths by vary-

ing the values of h1. A transverse force pulse as shown in
Fig. 5 is applied at the free end node-4 of the beam. The
axial velocity responses at node-3 are computed and given in
Fig. 15. The wave pulse seen is the mode-converted So wave
generated at the damage and its magnitude increases with an
increase in damage size. It can be seen that they are very dis-
tinct for various values of depth.

Variation of the peak magnitude of the mode-converted
wave for various values of the depth of the notch is now plotted
using the developed damage-spectral element and it is shown
in Fig. 16. The normalization is done with respect to the mag-
nitude of the mode-converted wave when the notch depth is
1 mm, that is for a depth of half of the thickness. These plots
can be used for arriving at the depth of the notch from the
known magnitude of the mode-converted So pulse.

It is good to have verification with the results obtained using
other techniques. The experiments were conducted5 for notch
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Figure 16. Variation of peak magnitude of the mode-converted wave velocity
with notch depth.

sizes of 0.25 mm, 0.5 mm, 0.75 mm and 1 mm. The experi-
mental setup, measurements and the procedures of conducting
the experiments are as given in an earlier work5 and hence not
repeated here. Experimentally obtained values are also shown
in Fig. 16. It can be seen that the results obtained using the
spectral element are in good agreement with those obtained
through experiments. The magnitude of the mode-converted
wave in the experiment is consistently slightly higher com-
pared to those obtained using the spectral element.

In an earlier work, Patnaik et al.5 had used commercial FE
software ABAQUS v6.12 for the above purpose. The system
run time taken for one simulation, that is for one value of the
notch, was several hours whereas it has taken a few seconds
while using this spectral element. Therefore, generating the
curve given in Fig. 16 through FEM has not been tried here. It
needs to be noted that by using this spectral element the time
taken for computation is extremely low and does not need to
have costly commercial software.

In summary, the results show that the developed damage-
spectral element is capable of capturing the changes in wave
characteristics due to the presence of damage. It allows one
to study the differences in the wave transmission characteris-
tics for various parameters of the damage using a computation-
ally efficient spectral element without needing any commercial
software and utilize them for the assessment of the size of the
damage. The methodology is demonstrated for a typical case
and one can apply it to the specific application.

5.2. Quantification of Notch Length
Determining the length of the damage from the mode-

converted wave is very complex. However, it can be quanti-
fied from the ToF of the reflections of the primary propagating
wave from the ends of the notch. It requires that the wave-
length (λ) of the propagating wave be comparable to the size
of the damage.1, 27 The damage-spectral element presented in
this work can be used to perform this, which is demonstrated
here.

A beam having a notch as shown in Fig. 17 is modeled using
the damage-spectral element. For this purpose, the primary
propagating wave that gets reflected at the damage (Ao mode)

Figure 17. Dimensional parameters of beam with damage.

is used. A transverse force of modulated five cycle pulse of
1 N magnitude at 500 kHz is applied at the free end of the
beam. Simulations are carried out for various values of the
notch length ‘L3’ and the transverse velocity response at the tip
of the beam is captured. The beam tip response is considered
for the study to get distinct wave reflections from the damage
ends and without interaction with the reflected waves from the
fixed end. The notch lengths studied are 5 mm, 10 mm, 20 mm
and 30 mm which approximately represent λ/2, λ, 2λ and 3λ
of the propagating Ao mode at 500 kHz.

Figure 18 shows the transverse velocity response of the
beam for different notch lengths. It is noticed that when the
length of the damage is less than the wavelength of the propa-
gating Ao wave, the reflection from the right and the left ends
of the damage get merged onto a single wave packet as seen
in Fig. 18(a). As the length of the damage increases beyond
the wavelength as seen in Fig. 18(b) to (d), the wave pack-
ets reflected from the damage appear from each end of the
damage. Distinct waves are clearly seen for damages having
lengths greater than λ. It is also observed that the amplitude
of the wave reflected from the farthest end of the damage is
larger. The length of the damage estimated based on the differ-
ence in ToF of the reflected waves from the ends of the dam-
age in Fig. 18(c) is 18.4 mm which is close to the actual notch
length of 20 mm. Similarly, the estimated length of the damage
from Fig. 18(d) is 28.5 mm against the actual value of 30 mm.
Hence the damage-spectral element presented in this work can
be very well used for characterizing the length of the damage.

Thus, it is demonstrated that the damage-spectral element
presented in this work can very well be used to quantify the
depth and length of the damage. The depth of the notch is
identified using the mode-converted wave and the length of the
damage is identified through the reflected primary propagating
mode when excited using an anti-symmetric guided wave.

6. CONCLUSIONS

A frequency domain damage-spectral element to represent a
notch-type of damage in a beam located asymmetrically across
the section was presented. The developed damage-spectral ele-
ment was able to represent the wave scattering and mode con-
version generated by a non-symmetric type of damage. The
results obtained using this spectral element were very much in
agreement with those obtained through FEM simulations. The
notch-type damage was characterized by its depth and length
and can be modeled by a single spectral element. This damage-
spectral element can be employed in quantifying the depth and
length of the damage. The spectral element was able to pre-
cisely capture the variation of response of the mode-converted
wave with a change in depth of the damage. The magnitude

International Journal of Acoustics and Vibration, Vol. 29, No. 3, 2024 313



M. N. M. Patnaik, et al.: DAMAGE QUANTIFICATION USING MODE CONVERTED GUIDED WAVE BASED 1D DAMAGE-SPECTRAL ELEMENT

Figure 18. Transverse velocity response at the beam end for varying notch length.

of the mode-converted wave increased with the depth of the
notch. A typical relation between the amplitude of the mode-
converted wave and the depth of the notch in an isotropic beam
was presented. The curve was in agreement with the exper-
imental results. The damage length was quantified based on
the ToF variation in the reflected waves from the ends of the
damage, provided the wavelength of the propagating wave was
comparable with the size of the damage. The amplitude of
the wave reflected from the farthest end of the damage was
larger. The spectral element was capable of capturing both the
depth and length of the notch. The time needed for compu-
tation was extremely low and also there was no need to use
any commercial FEM software. The inherent computational
advantage of spectral finite element analysis coupled with the
use of damage-spectral element will be very efficient for SHM
applications.
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