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Milling chatter is a self-excited vibration phenomenon during the cutting process, typically occurring in machining
operations with lower stiffness. It significantly impacts the machining precision and surface morphology of the
workpiece. To summarize the vibration signal features under operating conditions and enhance the precision of the
intelligent recognition model for milling chatter features, this paper proposes an adaptive learning model for chatter
feature recognition based on the improved convolutional clustering algorithm. This study uses wavelet analysis to
extract chatter features and improved convolutional clustering to identify chatter and stable cutting signals. This
method selected appropriate mapping techniques based on differences in chatter signals under various conditions
and uses convolution for feature extraction. Improve convolutional clustering evaluates sample similarity through
energy transfer, less influenced by signal space structure compared to Euclidean or Mahalanobis distances. This
method provides a unified criterion for evaluating different signal feature representation spaces, thereby improving
the accuracy and efficiency of chatter sample recognition. The recognition accuracy of chatter phenomena at
different spindle speed ranges reaches 95 % and 96.3 % respectively. The results show that this method can
effectively distinguish between chatter signals and stable cutting signals.

1. INTRODUCTION

Milling chatter is a phenomenon of self-excited vibration
that occurs during the interaction of physical fields and the
machining system in the material removal process. It often
manifests in the machining of complex surfaces, especially in
the manufacturing of components with low stiffness such as
impeller blades. This phenomenon has a significant impact on
the precision machining quality and efficiency of such com-
ponents. By studying the principles of chatter, establishing
Stability Lobe Diagram (SLD), and planning process param-
eters reasonably, it is possible to avoid the occurrence of chat-
ter during the machining process. However, due to the influ-
ence of material hardness variations and sudden changes in the
external environment, irregular chatter may occur during the
machining process that does not follow established patterns.
Therefore, it is significant to identify chatter caused by sudden

changes. Among them, establishing an accurate and efficient
chatter signal feature recognition model is a core step in con-
structing a chatter feature monitoring system. Researching the
adaptive learning functionality of chatter signal feature recog-
nition systems is a prerequisite for further enhancing the ac-
curacy of the chatter feature recognition system model during
operational conditions.

Chatter is classified into regenerative chatter, frictional chat-
ter, and coupled chatter, with regenerative chatter being the
most common type encountered in practical machining pro-
cesses. Previous researchers, through the study of regener-
ative chatter, established the SLD, which is used to express
the influence of spindle speed and axial depth of cut on ma-
chining stability. Some researchers have proposed a method
to obtain a SLD through experiments. They design an in-
clined workpiece to change the axial depth of cut and deter-
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mine the boundary points of the entire SLD by changing the
spindle speed multiple times.1, 2 Some researchers have also
studied Reliability Lobe Diagram (RLD)3 to predict the re-
gion where chatter is likely to occur. Summarizing the signal
features during milling chatter, predicting the occurrence of
chatter signals through the recognition of signal feature mod-
els, and adjusting process parameters to avoid chatter phenom-
ena are essential methods to improve milling machining ac-
curacy and efficiency. Signals that effectively represent chat-
ter features during machining include, acoustic pressure sig-
nals,4 spindle acceleration vibration signals,5, 6 acoustic emis-
sion signals,7, 8 current signals,9, 10 power signals,11 and so
on. Threshold methods and pattern recognition methods are
common approaches for chatter recognition.12 In the pat-
tern recognition method, techniques such as wavelet trans-
form (WT),13, 14 Ensemble Empirical Mode Decomposition
(EEMD)15, or Variational Mode Decomposition (VMD)16 are
employed for signal decomposition to extract time-frequency
domain features. These features are then combined with algo-
rithms such as Deep Neural Networks (DNN), Convolutional
Neural Net-works (CNN), Support Vector Machines (SVM),
Artificial Neural Networks (ANN), etc., to construct chatter
detection systems,4, 17–19 thereby improving the accuracy of
chatter recognition. In the threshold method, kurtosis,20 vari-
ance21, and Root Mean Square (RMS)22 can be used as time-
domain signal differentiation indicators for distinguishing be-
tween machining chatter and stable cutting. In the frequency
domain, methods such as Teager-Huang,23 Vold-Kalman,24

standard deviation,25 and others are commonly employed for
chatter signal feature extraction.

Due to the lack of adaptive learning functionality in most
intelligent chatter feature recognition systems, they are unable
to induce data patterns during operation to correct the model.
Additionally, the manual summarization of patterns and the
inputting of data into the dataset involve a significant work-
load. To address the issues and enhance the predictive accu-
racy of unsupervised learning models, this paper proposes an
improved convolutional clustering based unsupervised learn-
ing method applied in the chatter recognition system. This
method enables labeling of collected signals through data fea-
tures during the model’s working process. It facilitates real-
time learning of data types, updating data labels, expanding
the dataset, and adjusting the boundaries of the chatter feature
recognition model. Using wavelet and wavelet packet trans-
forms to establish a hybrid preprocessing model lays the foun-
dation for subsequent chatter identification. By adjusting the
parameters of convolutional layers and pooling layers to re-
duce the dimensionality of the mapping space obtained from
the hybrid preprocessing model, improving the accuracy of
chatter feature recognition. In addition, utilizing Wasserstein
distance improved the clustering method, providing a unified
criterion for evaluating different signal feature representation
spaces, thereby enhancing the accuracy and efficiency of chat-
ter sample recognition.

2. SELF-LEARNING ALGORITHM MODEL
FRAMEWORK FOR CHATTER FEATURE
INTELLIGENT RECOGNITION SYSTEMS

The self-learning algorithm framework for the intelligent
recognition system of chatter features is illustrated in Fig. 1,

Figure 1. Intelligent recognition system flowchart.

the steps to implement the self-learning algorithm are as fol-
lows: (1). Build a vibration signal acquisition system for
milling processes using an accelerometer. Establish a vibration
signal dataset that includes both stable cutting and cutting chat-
ter processes. (2). Combining wavelet/wavelet packet analysis
methods to transform signal features into time-frequency do-
main representations. Plot the energy spectrum of the cutting
vibration signal to map the characteristic signal components of
chatter phenomena. (3). Further extract chatter signal features
through convolutional layers and compress signal dimensions
using pooling layers. (4). Utilize clustering analysis to perform
unsupervised learning on chatter signal features and stable cut-
ting signal features. Establish a unified chatter signal feature
recognition model through improved convolutional clustering
for different spindle speed conditions, addressing the issue of
non-uniform hard threshold values for chatter features under
different operating conditions. By applying this method to
label the cutting experimental samples, it achieves adaptive
learning and optimization of chatter signal recognition.

3. MILLING STABILITY ANALYSIS

Regenerative chatter is the critical stable state in the milling
process. To study the phenomenon of regenerative chatter, it is
essential to first investigate the dynamic model of the milling
process. The dynamic model of the milling process is illus-
trated in Fig. 2, in the figure, Φj is the instantaneous cutting
angle of the j tooth (rad), Ω is the spindle speed (r/min), ae
represents the radial depth of cut (mm), vt represents the feed
direction of the tool, Ftj and Fnj are respectively the tangen-
tial cutting force (N) and radial cutting force (N) experienced
by the j tooth.

Due to the presence of two degrees of freedom vibration
systems in the X and Y directions on the milling system, the
dynamic cutting force differential equation of the milling sys-
tem is given in Eq. (1):

M

[
x”(t)
y”(t)

]
+ C

[
x′(t)
y′(t)

]
+K

[
x(t)
y(t)

]
=

[
Fx

Fy

]
; (1)

In the equation, Fx and Fy are the cutting forces on the
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Figure 2. Milling dynamics model.

milling cutter in the X and Y directions, respectively. x, x′,
x” and y, y′, y” represent the displacement, velocity, and ac-
celeration on the tool, respectively. M , C, andK represent the
mass, damping, and stiffness matrices, respectively.

M =

[
mxx mxy

myx myy

]
,

C =

[
cxx cxy
cyx cyy

]
,

K =

[
kxx kxy
kyx kyy

]
. (2)

Combining Eq. (1), the transfer function matrix can be either
solved using the harmonic response analysis method or mea-
sured directly through modal experiments, as shown in Eq. (3).

G(iω) =

[
Gxx(iω) Gxy(iω)
Gyx(iω) Gyy(iω)

]
; (3)

where Gxx(iω) and Gyy(iω) are the direct transfer functions
in x and y directions, and Gxy(iω) and Gyx(iω) are the cross
transfer functions.

Let r be the tool tip vibration at the current time t, and r0
be the vibration at the same phase angle from the previous tool
tip pass. As shown in Eq. (4){

r = [x(t), y(t)]T

r0 = [x(t− T ), y(t− T )]T
. (4)

The projections of the vibration on the x and y axes of the
coordinate system are defined as x(t) and y(t), respectively.

Regenerative chatter studies focus on the system’s unsta-
ble operating process, which can be explained as the divergent
state of the system’s free vibration. This vibration frequency,
known as the chatter frequency, is related to the system’s poles
and is independent of the forced vibration (spindle speed) fre-
quency. Let the chatter frequency be the first-order modal fre-
quency ωc of the machining system. The cutting force caused
by chatter can be expressed as a harmonic form with frequency

ωc, be known as F−iωct
e . Currently, the phase difference be-

tween the vibration of the previous tool tip at the same phase
angle and the vibration at the current moment is ωct. There-
fore, combining the frequency response function, we obtain
Eq. (5). {

r(iωc) = G(iω0)F iωct
e

r0(iωc) = e−iωctr(iωc).
(5)

At this time, the projection of the uncut chip thickness
caused by vibration in the coordinate system can be repre-
sented by ∆ = [(x− x0), (y − y0)]

T , as shown in Eq. (6).

∆(iωc) = r(iωc)−r0(iω) = (1−e−iωct)eiωctG(iωc)F ; (6)

by substituting Eq. (6) into Eq. (7).

F (t) =
1

2
apKtA0∆(t). (7)

The critical condition for regenerative chatter can be ob-
tained. At this point, the amplitude of the cutting force in-
duced by vibration is magnified by the dynamic cutting force,
indicating the onset of chatter. When both sides of the equation
are equal, it represents the critical state at which regenerative
chatter occurs. Using the critical chatter expression, the rela-
tionship between the critical depth of cut and spindle speed can
be determined.

Feiωct = −1

2
apKt(1− eiωct)A0G(iωc)Fe

iωct; (8)

in the equation, ap is the axial depth of cut,Kt is the tangential
force cutting coefficient, A0 is the directed dynamic milling
force coefficient matrix, and ∆(t) is the dynamic displacement
matrix in the X and Y directions. F (t) is the dynamic milling
force.

The relationship between the critical depth of cut ap and
spindle speed, also known as the stability lobe diagram, can be
determined using Eq. (8).

4. STUDY ON HYBRID PREPROCESSING
MODEL BASED ON SIGNAL FEATURES
UNDER DIFFERENT OPERATING
CONDITIONS

Based on the above method, a SLD can be established.
Through the SLD, rational planning of process parameters can
effectively avoid the occurrence of chatter. However, during
the cutting process, sudden changes in material hardness and
external environmental factors may occur, leading to situations
that do not conform to the SLD. At this point, utilizing vibra-
tion signals for chatter recognition becomes crucial.

Figure 3 shows the time domain diagram of vibration signals
during the milling process, representing stable cutting, weak
chatter, and strong chatter conditions, respectively. As shown
in the figure, the amplitude is smaller and the signal is orderly
in a stable cutting state. When chatter occurs, the amplitude
increases and the signal becomes chaotic. As the energy of
the chatter increases, it severely affects the lifespan of the tool
and the machine. To better analyze the chatter signals, this
paper employs continuous wavelet transform/wavelet packet
transform methods to map time-domain signals into the time-
frequency domain space for expression, establishing a hybrid
preprocessing model and laying the foundation for subsequent
chatter feature identification.
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Figure 3. Time-domain diagrams of milling signals in different states.

4.1. Continuous Wavelet Transform (CWT)

The mathematical model for WT is given by Eq. (9):

G =W × x; (9)

Here, W is the wavelet basis vector, as shown in Eq. (10); x
is the input signal of length N, and G is the wavelet coefficient
matrix.

W = [ψ(a1, b1)ψ(a1, b2)Lψ(a1, bN )ψ(a2, b1)L

ψ(a2, bN )Lψ(aM , bN )]T ; (10)

In the equation, a is the scale factor, b is the translation factor,
M is the scale number, and N is the signal length.

The CWT is defined as shown in Eq. (11):

WT [f(a, b)] =
1√
a

∫ +∞

−∞
f(t)ψ(

t− b

a
)dt; (11)

where f(t) is the original signal, and ψ(t) is the wavelet basis
function.

The Complex Morlet function graph is depicted in Fig. 5 (a),
showing its balance in both the frequency and time domains,
making it highly effective for analyzing signals with distinct
frequency characteristics, particularly suitable for chatter sig-
nals. Its mathematical expression is given in Eq. (12).

ψ(ω) =
σ√
π
e−σ2ω2

ei2πfcω; (12)

Here, ω represents time, fc represents the central frequency,
and σ represents the wavelet window width.

4.2. Wavelet Packet Transform (WPT)
Because CWT only decomposes the low-frequency band

signal during signal decomposition, it has lower resolution in
decomposing high-frequency band signals. WPT, on the other
hand, is an optimization of CWT. In its decomposition of sig-
nals, it utilizes low-pass filter h(x) and high-pass filter g(x) to
convolve with the signal. This process decomposes the signal
into low-frequency and high-frequency regions, thereby en-
hancing the resolution of CWT in high-frequency segments.
The formula for WPT is given by Eq. (13).{

dj,2nl =
∑

k hk−2ld
j−1,n
k

dj,2n+1
l =

∑
k gk−2ld

j−1,n
k

(13)

Where dj,2nl and dj,2n+1
l represent the WPT decomposition co-

efficients, and hk−2l and gk−2l are the low-pass and high-pass
filter coefficients for the WPT.

In Figure 4 (a), the wavelet packet tree diagram represents
the three-level wavelet packet decomposition of the accelera-
tion signal collected during the machining process. The third-
level wavelet packet decomposition divides the signal in the
0 ∼ 6500 Hz range into eight segments with equal band-
widths. Figure 4 (b) represents the time-frequency diagram
of the wavelet packet, used to describe the time-frequency do-
main features of the signal. The vertical axis is divided into re-
gions based on the third-level wavelet packet decomposition,
with numbers from small to large corresponding to the fre-
quency bands of the third-level wavelet packet tree from left
to right nodes.

In this paper, the Meyer wavelet is chosen as the basis func-
tion for the WPT. Geometrically, the compact support in the
time domain of the Meyer wavelet ensures its time-domain
characteristics. Moreover, the Meyer wavelet exhibits mul-
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Figure 4. The wavelet packet tree and time-frequency diagram of the vibra-
tion signal.

tiscale resolution characteristics, making it suitable for non-
stationary signals. It allows for the decomposition and recon-
struction of signals at different time and frequency scales, en-
abling adaptation to local variations in signal features. Thus,
in the extraction of chatter features, the Meyer wavelet can ef-
fectively partition various sub-bands. The function graph is
depicted in Fig. 5 (b). Meyer wavelet’s Fourier transform is
shown in Eq. (14).

ψ̂(ω) =
1√
π
e

iω
e sin

[
π
2 v(x)

(
3
2π |ω| − 1

)]
2π
3 ≤ |ω| ≤ 4π

3
1√
π
e

iω
e cos

[
π
2 v(x)

(
3
4π |ω| − 1

)]
4π
3 ≤ |ω| ≤ 8π

3

0 |ω| /∈
[
2π
3 ,

8π
3

]
;

(14)

where v(x) satisfies:

v(x) =


1 1 ≤ x

v(x) + v(1− x) = 1 0 ≤ x ≤ 1

0 x ≤ 0

. (15)

As shown in Fig. 6 (a) represents the vibration signal at
1250 r/min spindle speed, 200 mm/min feed rate, and 0.5 mm
depth of cut, while in Fig. 6 (b) represents the vibration sig-
nal at 2400 r/min spindle speed, 200 mm/min feed rate, and
2.0 mm depth of cut. As shown in the figure, at spindle
speeds between 1000 r/min and 3000 r/min, the difference be-
tween chatter signals and stable cutting signals is primarily ev-
ident in the low-frequency region. Since the CWT has higher
resolution in the low-frequency range compared to the high-
frequency range, it can better handle the distinction between

Figure 5. Wavelet basis function.

chatter signals and stable cutting signals at spindle speeds be-
tween 1000 r/min and 3000 r/min. In Figure 7 (c) represents
the vibration signal at a spindle speed of 4100 r/min, a feed
rate of 200 mm/min, and a depth of cut of 0.5 mm. Fig-
ure 7 (d) represents the vibration signal at a spindle speed of
4100 r/min, a feed rate of 200 mm/min, and a depth of cut
of 3.5 mm. At spindle speeds of 3000 r/min to 5000 r/min,
the energy of natural frequency and self-excited vibration in-
creases. There is more interference in the low-frequency re-
gion, and the difference between chatter signals and stable cut-
ting signals in the high-frequency range is significant. CWT
cannot provide the same high resolution for extracting infor-
mation in both high and low-frequency bands. WPT can de-
compose high-frequency signals and low-frequency signals at
the same level. This approach reflects the energy levels in each
frequency band, distinctly distinguishing between chatter and
interference information.

5. MODELING OF INTELLIGENT
RECOGNITION SYSTEM SELF-
LEARNING ALGORITHM BASED ON
CONVOLUTIONAL CLUSTERING

5.1. Research On Feature Extraction Method
Based On Standard Deviation

By employing the method of CWT/WPT, the vibration sig-
nal was transformed into a time-frequency diagram. To enable
the model to distinguish between chatter and stable cutting sig-
nals in the time-frequency diagram, feature extraction was ap-
plied to the time-frequency diagram.
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Figure 6. CWT time-frequency plot of stabilised/fibrillating signals.

Feature extraction based on the standard deviation of energy
in the time-frequency diagram can help distinguish between
the two signals to some extent. Mathematical formula for stan-
dard deviation is as follows.

SN =

√√√√ 1

N

N∑
i=1

(xi − x̄)2; (16)

x̄ =
x1 + x2 + x3 + · · ·xN

N
; (17)

where N was the number of pixels in the image, xi was the
energy value at the i point in the current channel. x̄ was the
average energy value of the current channel.

From the formula, it can be observed that the standard de-
viation was calculated based on the mean. A larger standard
deviation indicates greater overall energy variation in the cur-
rent channel, reflecting differences in energy across the image
space. This can help distinguish between chatter signals and
stable cutting signals to some extent.

In Figure 7 (a) represents the vibration signal at 1250 r/min
spindle speed, 200 mm/min feed rate, and 0.5 mm axial depth
of cut. The sound is steady during processing, and no chatter
marks are left on the surface, indicating stable machining sig-
nals. In Figure 7 (b) shows the vibration signal at 2400 r/min
spindle speed, 200 mm/min feed rate, and 2.0 mm axial depth
of cut. The sound was sharp during processing, and chatter
marks were visible on the surface, indicating chatter signals.
Through experimental comparison, it was found that the fea-

tures differences between chatter signals and stable cutting sig-
nals in the wavelet packet time-frequency diagrams were not
significant at speeds between 1000 r/min and 3000 r/min. After
extracting features using the standard deviation and perform-
ing clustering, the clustering accuracy was 81 %.

Figure 7 (c) represents the vibration signal at a spindle speed
of 4100 r/min, a feed rate of 200 mm/min, and an axial cutting
depth of 0.5 mm. The sound during processing was stable, and
the surface shows no chatter marks, indicating a stable cutting
signal; Fig. 7 (d) represents the vibration signal with a 3.5 mm
axial depth of cut under the same conditions. The sound during
processing was sharp, and the surface exhibited chatter marks,
indicating chatter. Through experimental comparison, it was
found that in the speed range of 3000 r/min to 5000 r/min,
the differences in the wavelet packet time-frequency diagram
are apparent. However, utilizing standard deviation for feature
extraction and subsequent clustering was limited. Since stan-
dard deviation can only assess global differences to determine
features and cannot directly discern the spatial distribution of
energy, the clustering accuracy is only 74.15 %.

To better extract chatter signal features and improve the ac-
curacy of clustering algorithms, a method capable of recog-
nizing the distribution of energy in the time-frequency domain
space is needed. In this paper, we introduce a feature extraction
method based on convolutional layers and pooling layers.

5.2. Feature Extraction Method Based On
Convolutional And Pooling Layers

To compensate for the insufficient feature extraction capa-
bility of the standard deviation method, this paper proposes a
data preprocessing method based on convolutional and pooling
layers. The method of using convolutional and pooling layers
transformed the time-frequency diagram into a low-frequency
space that encapsulated the chatter features. In this space,
certain basis vectors can represent the features of chatter sig-
nals. At this time, chatter features were minimally affected by
other interference information. The boundary between chat-
ter samples and stable cutting samples became clearer in the
space, thereby extracting effective chatter features. The con-
volutional layer traverses the image with different-sized con-
volutional kernels (filters) to obtain feature information from
the image. The convolution operation is shown in Eq. (18).

f(z) =

L∑
j=1

C∑
i=1

Zi,j × wi,j + b; (18)

In the equation: L and C represented the length and width of
convolutional kernels, respectively; Zi,j represented the eigen-
value of the input matrix at position (i, j); wi,j and b repre-
sented the weight and bias of the convolutional kernel, respec-
tively; f(z) represented the output obtained from the convolu-
tion.

The convolutional kernel traversed the input image with the
set stride to obtain a new feature map. The convolution op-
eration involves multiplying and adding the corresponding el-
ements of the input image and the convolutional kernel. Fig-
ure 8 (a) it can be observed that the input image undergoes
convolutional operation with a 3× 3 kernel to generate the re-
sulting feature map. To control the size of the output image,
padding with zero values can be applied to the outer layer of
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Figure 7. WPT Time-Frequency diagram under variable speed/cutting depth.

Figure 8. Convolution and edge padding.

the output image. The size of the output image after convolu-
tion can be calculated using Eq. (19) and Eq. (20):

H =
H1 + 2P − F

S
+ 1; (19)

W =
W1 + 2P − F

S
+ 1. (20)

The formula relates the size of the output imageH andW after
convolution with the size of the input imageH1 andW1, where
P represented the padding amount, determining the number of
zeros added to the output image, S is the stride, and F was the
width of the convolution kernel.

As shown in Fig. 8 (b), edge padding resolves the issue of
reduced image size after convolution. When padding was set to
1, the convolved image was surrounded by an additional layer
of zeros.

The main purpose of the pooling layer is to reduce the di-
mensions of the feature maps, thereby decreasing the size of
the image while retaining its important features. Like the con-
volutional layer, the pooling layer also employs a filter to per-

Figure 9. Pooling operation.

form down sampling on the feature maps. However, the filter
in the pooling layer does not involve data in the calculation,
which helps prevent overfitting to some extent. The common
pooling methods include max pooling and mean pooling. Max
pooling is illustrated in Fig. 9 (a), where a filter traverses the
feature map, extracting the maximum feature value and plac-
ing it in the corresponding position of the new feature map.
The specific operation is shown in Eq. (21).

f(x) = max{xn|n = 1, 2, 3 · · · i}. (21)

Mean pooling, as shown in Fig. 9 (b), computes the mean
value of the feature map to generate the output. The calculation
is expressed by Eq. (22).

f(x) = mean{xn|n = 1, 2, 3 · · · i}; (22)

In the equation: xn was the activation value of the neuron; i
was the number of elements in the current pooling kernel; f(x)
represents the output of the pooling layer.

From Fig. 10, it can be observed that feature maps can un-
dergo feature extraction and compression through two path-
ways. When clustering the signals from the speed range of
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1000 r/min to 3000 r/min after continuous wavelet decompo-
sition, using the second pathway, features are compressed to a
dimension of 1 ∗ 32 through convolution and pooling. In the
remaining spindle speed ranges and data processing methods,
the first pathway is used to compress the features to a dimen-
sion of 1 ∗ 64.

5.3. Improved K-Means Algorithm Based
Self-Learning Method For Chatter
Features

This paper employs the K-means algorithm for unsupervised
learning on one-dimensional feature vectors processed by con-
volutional and pooling layers. The algorithm steps are as fol-
lows. (1) Randomly select two samples from the dataset as the
initial centers of two clusters; (2) According to the Wasserstein
distance formula, calculate the distance between each sample
point in the dataset and the centers of the two clusters. Assign
each sample point to the cluster center closest to it, dividing
the dataset into two clusters; (3) Using the sample points in
each cluster, calculate the centroid of each cluster based on
the mean, where the obtained centroids are not required to be
within the dataset; (4) Repeat steps 2 and 3 until the sample
points in the clusters no longer change, then stop the iteration
and output the classification results.

Traditional K-means algorithm uses Euclidean distance to
calculate the distance between each sample point and the clus-
ter center. As shown in Eq. (23).

dis(xi, cj) =

√√√√ m∑
t=1

(xit − cjt)2; (23)

In the formula, xi represents the i-th object, cj represents the
j-th cluster center, 1 ≤ j ≤ k; xit represents the t-th attribute
of the i-th object, 1 ≤ t ≤ m, cjt represents the t-th attribute
of the j-th cluster center.

In high-dimensional space, sample distribution becomes
sparse, and the basis vectors in each dimension are not neces-
sarily orthogonal to each other. This phenomenon leads to the
uncertainty of the Euclidean distance criterion, making the Eu-
clidean distance unreliable in high-dimensional space. Com-
pared to Euclidean distance, the Wasserstein distance quanti-
fies the minimum cost of transforming one sample into another,
identifying the similarity between samples through this mini-
mum cost. Thus, it can comprehensively assess the distance
between two samples by considering the differences across
multiple dimensions, making it suitable for determining the
similarity of samples in various dimensional spaces, particu-
larly in high-dimensional spaces. Because the convolutional
results of images are typically high-dimensional samples, this
paper adopts the Wasserstein distance to enhance the K-means
algorithm.

The transformation principle of the Wasserstein distance is
illustrated in Fig. 11. The original vector is denoted as P ,
and the target vector is denoted as Q. The original vector P
is transformed into a joint vector α with the target vector Q
through the inverse matrix F−1

Y . Subsequently, using the ma-
trix Fx, it is transformed back into the target vector Q. The
goal was to minimize the distance between F−1

Y and Fx, mak-
ing the transformation cost minimal. When this condition is

met, the two vectors are considered most similar. The distance
between P and Q at this point is given by:

W (P,Q) = ||F−1
x − F−1

Y ||p. (24)

The specific process for calculating the distance is as fol-
lows: P = {(li, wi)|i = 1, 2, · · · , n} was a one-dimensional
vector with n data samples, where li and wi were the coordi-
nates and weights of the i-th element of P . Q = {(lj , wj)|j =
1, 2, · · · ,m} was a one-dimensional vector with m data sam-
ples, where lj and wj were the coordinates and weights of the
j-th element of Q. To minimize the overall migration cost, it
is necessary to find a flow function F = (fij)n∗m, where fij
represents the amount to be moved between li and lj . The
minimum cost is:

WD(P,Q, F ) =

n∑
i=1

m∑
j=1

dijfij . (25)

Subject to the following constraints:

fij ≥ 0, i = 1, 2, · · · , n, j = 1, 2 · · ·m; (26)

m∑
j=1

fij ≤ wi, i = 1, 2, · · ·n; (27)

n∑
i=1

fij ≤ wj , j = 1, 2, · · ·m; (28)

n∑
i=1

m∑
j=1

fij = min(

n∑
i=1

wi,

m∑
j=1

wj). (29)

Here, dij represents the distance between li and lj .
The optimal F∗ = (f∗ij)n∗m is the sought-after Wasser-

stein distance and is found as shown in Eq. (30):

WD(P,Q) =

∑n
i=1

∑m
j=1 dijf

∗
ij∑n

i=1

∑m
j=1 f

∗
ij

. (30)

Sequentially compare the distance from each object to each
cluster center, assign the object to the cluster of the nearest
center, and obtain k clusters {s1, s2, · · · , sk}. The subsequent
cluster determines its new centroid by averaging all its internal
points, with the mean calculated as in Eq. (31):

c1 =

∑|Sl|
i=1

|sl|
x1; (31)

In the formula, cl represents the centroid of the l-th cluster,
where 1 ≤ l ≤ k, and |sl| represents the number of objects in
the l-th cluster.

6. MILLING CHATTER EXPERIMENT

Figure (12) illustrates the surface topography, time-domain
signals, and time-frequency domain signals during the milling
process at different spindle speeds and axial depths of cut.
From the figure, it can be observed that stability is maintained
with small axial depths of cut, while the tendency for chatter
increases with larger axial depths of cut. Based on the exper-
imental results in the figure, the approximate critical chatter
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Figure 10. Improved convolutional clustering network structure.

Figure 11. Wasserstein distance principle.

Figure 12. Distribution diagram of chatter and stable cutting samples.

Figure 13. Milling experimental platform.

positions can be determined, guiding the planning of experi-
mental parameters.

The milling experiment, as shown in Fig. 13, consists of a
CNC machine tool, milling cutter, workpiece, acceleration sen-
sor, data acquisition card, and computer. The tool was a tung-
sten steel vertical milling cutter with a hardness of 60 and four
teeth. The tool was suitable for a speed range of 1000 r/min to
5000 r/min. The acceleration sensor used was the PCB 352C03
type sensor, with a sensitivity of 9.77 mV/g; The data acquisi-
tion card used is the NI-9234 type acquisition card; The sam-
pling frequency was set to 13000 Hz. The workpiece has di-
mensions of 100 mm ∗130 mm ∗25 mm and is made of 45#
modulation steel. Based on the applicable speed range of the
tool and the performance of chatter at different speeds, the ex-
perimental groups are divided. The experimental groups are
categorized into speed ranges of 1000 r/min to 3000 r/min and
3000 r/min to 5000 r/min.

By planning experimental parameters, milling experiments
were conducted to validate the accuracy of the algorithm using
experimental data. 300 sets of experimental samples were con-
figured in the range of 1000 r/min to 3000 r/min, with 150 sets
as chatter samples and 150 sets as stable cutting samples. In
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the range of 3000 r/min to 5000 r/min, 325 sets of experimen-
tal samples were configured, with 220 sets as chatter samples
and 105 sets as stable cutting samples.

Figure 14 illustrates the variation in the number of iterations
under the influence of different initial cluster centers. Whereas
a and b form one pair; c and d constitute another pair. The
Figures 14 (a) and 14 (c) represent the sum of distances from
the final cluster members to the center at each iteration. As
shown in Fig. 14 (a) when there is a significant difference be-
tween the initial cluster centers and the actual cluster centers,
it leads to an increase in the number of iterations, thus seek-
ing the real cluster centers. When the initial cluster centers
are chosen more reasonably, as shown in Fig. 14 (c) the num-
ber of iterations significantly decreases. The Figures 14 (b)
and 14 (d) represent the distance between adjacent cluster cen-
ters. When the initial cluster centers are poorly chosen, with
changes in cluster membership, the cluster centers may expe-
rience significant movement. The distance between adjacent
cluster centers can fluctuate greatly but tends to stabilize with
iterations until the distance between two points becomes 0, as
shown in Fig. 14 (b). After 13 difference calculations, the dis-
tance between the two cluster centers in this cluster becomes
0. When the initial cluster centers are chosen more reason-
ably, there is less variation in cluster membership, and the
movement of cluster centers is smaller. The movement be-
tween adjacent cluster centers is relatively smooth, as shown
in Fig. 14 (d). After 5 difference calculations, the distance be-
tween the two cluster centers becomes 0.

Perform feature extraction on the experimental group data
using standard deviation and convolutional layers with pool-
ing layers, respectively. Compare the accuracy of the algo-
rithm after feature extraction using these two methods. Ac-
cording to Tab. 1, it can be observed that in the feature ex-
traction methods based on CWT and standard deviation, the
accuracy reaches 95 % at speeds ranging from 1000 r/min to
3000 r/min. This indicates that at this speed range, there is
a clear boundary in the overall energy distribution between
chatter signals and stable cutting signals. However, at speeds
ranging from 3000 r/min to 5000 r/min, the accuracy of stan-
dard deviation is 89.84 %; In the WPT, the accuracy of the
standard deviation feature extraction method at spindle speeds
ranging from 1000 r/min to 3000 r/min is 81 %; At spindle
speeds ranging from 3000 r/min to 5000 r/min, the accuracy
is 74.15 %, reflecting that the overall energy distribution in the
time-frequency diagram at this speed range does not effectively
differentiate between chatter signals and stable cutting signals.
In the feature extraction method based on CWT and improve
convolutional clustering, the accuracy is 95 % at spindle speeds
ranging from 1000 r/min to 3000 r/min, and 82.46 % at spin-
dle speeds ranging from 3000 r/min to 5000 r/min. However,
in the feature extraction method combining WPT and improve
convolutional clustering, the accuracy is 68.66 % at spindle
speeds ranging from 1000 r/min to 3000 r/min. This reflects
that the difference between chatter signals and stable cutting
signals in the high-frequency range is not significant at this
speed range. At spindle speeds ranging from 3000 r/min to
5000 r/min, the accuracy is 96.3 %, indicating that at this
speed range, the difference between chatter signals and sta-
ble cutting signals is mainly distributed in the high-frequency
region. From the results, it can be observed that CWT re-
solves chatter signal features based on overall energy magni-

Table 1. Clustering accuracy of different feature extraction methods.

Feature extraction methods Spindle speed n(r/min) Accuracy
Standard deviation (CWT) 1000∼3000 95 %
Standard deviation (CWT) 3000∼5000 89.84 %
Standard deviation (WPT) 1000∼3000 81 %
Standard deviation (WPT) 3000∼5000 74.15 %

Improve convolutional clustering (CWT) 1000∼3000 95 %
Improve convolutional clustering (CWT) 3000∼5000 82.46 %
Improve convolutional clustering (WPT) 1000∼3000 68.66 %
Improve convolutional clustering (WPT) 3000∼5000 96.3 %

Table 2. Model accuracy with different distance formulas.

Formulas Spindle speed n(r/min) Accuracy
Euclidean distance 3000∼5000 90.04 %

Wasserstein distance 3000∼5000 96.3 %

tude. The signal analysis using CWT at spindle speeds ranging
from 1000 r/min to 3000 r/min is more effective than WPT. On
the other hand, WPT resolves chatter features by concentrat-
ing on high-energy clusters. At spindle speeds ranging from
3000r/min to 5000r/min, WPT is superior to CWT due to the
clear concentration of chatter energy.

Based on the above conclusions, this study adopts the CWT
method to process samples in the spindle speed range of
1000 r/min to 3000 r/min and utilizes the WPT method to
process samples in the spindle speed range of 3000 r/min to
5000 r/min. The improve convolutional clustering method is
employed for signal feature judgment, establishing a chatter
feature recognition system.

Due to the error in distance measurement in high-
dimensional space, caused by Euclidean distance, the cluster-
ing results are inaccurate. Therefore, Wasserstein distance is
used as a replacement for Euclidean distance in the clustering
algorithm’s distance measurement formula, improving the ac-
curacy of the algorithm, as shown in Tab. 2.

When stable cutting samples are mistakenly classified as
chatter samples and chatter control is applied, the impact on
the machining quality is relatively small. However, when chat-
ter samples are mistakenly classified as stable cutting samples
and no chatter control is applied, the impact on the machining
quality is significant. In Tab. 3, recall rate for chatter samples
was calculated using Eq. (32).

R =
TP

TP + FN
; (32)

R denotes the chatter samples recall; TP represents the num-
ber of correctly recognized chatter samples, and FN repre-
sents the number of chatter samples not recognized.

From the results in the Tab. 3, it can be observed that the re-
call of chatter signal feature judgment using the improve con-
volutional clustering method is generally superior to the stan-
dard deviation method. The improve convolutional clustering
method is more reliable.

Based on the above research results, this study ultimately
selects the improve convolutional clustering method to estab-

Table 3. Chatter sample recall rate under different feature extraction methods.

Feature extraction methods Spindle speed n(r/min) Recall
Standard deviation (CWT) 1000∼3000 90 %
Standard deviation (CWT) 3000∼5000 88.63 %

Improve convolutional clustering (CWT) 1000∼3000 92.66 %
Improve convolutional clustering (WPT) 3000∼5000 94.45 %
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Figure 14. Iterative process diagram of the improved convolutional clustering algorithm.

Table 4. Chatter sample recall rate under different feature extraction methods.

Feature extraction methods Spindle speed n(r/min) Accuracy Recall
Improve convolutional 1000∼3000 95 % 92.66 %clustering (CWT)
Improve convolutional 3000∼5000 96.3 % 94.45 %clustering (WPT)

lish an unsupervised learning model. The accuracy and recall
of the model are shown in Tab. 4.

7. CONCLUSIONS

This paper proposes a improve convolutional clustering
method for unsupervised learning of chatter signal features
in milling processes. The recognition accuracy of chatter at
different spindle speeds reached 95 % and 96.3 % respec-
tively. The results show that, at speeds between 1000 r/min-
3000 r/min, chatter features are more pronounced in the low-
frequency region. The use of CWT can better distinguish be-
tween chatter signals and stable cutting signals. At speeds
between 3000 r/min-5000 r/min, the increase in self-excited
vibration energy introduces more interference in the low-
frequency region. However, the difference between chatter
signals and stable cutting signals is significant in the high-
frequency range, and the use of WPT can better distinguish
between them. In summary, this paper draws the following
conclusions:

1. Establishing a hybrid preprocessing model for different
operating conditions can improve the ability to identify
chatter features.

2. Based on different spindle speed ranges, the optimal map-
ping space structure for chatter features was analyzed, re-
sulting in an improved classification accuracy of the chat-
ter recognition system.

3. Utilizing Wasserstein distance as a discriminant for sam-
ple distances in the clustering model effectively addresses
the issue of decreased accuracy in high-dimensional
spaces for the clustering model.
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