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A viscoelastic (VE) low-frequency vibration isolation and mitigation device is proposed in this paper. The device
consists of a VE damper, two oblique springs, and two oblique dampers to achieve low stiffness at the equilibrium
position. Property tests on the VE damper, which is the core component of the device, are conducted, and a math-
ematical model is employed to describe the dynamic properties of the VE damper. The influences of mechanical
and structural parameters on the stiffness characteristics of the device are investigated through static analysis. The
nonlinear dynamic equations of the vibration isolation system with the proposed device are established. The ef-
fects of the system parameters on the frequency-amplitude responses and absolute displacement transmissibility
are numerically discussed. The isolation performance of the proposed device is compared with that of the isolator,
which only consists of a VE damper. The results show that the VE low-frequency vibration isolation and mitiga-
tion device can effectively reduce the initial isolation frequency and broaden the isolation frequency interval. The
proposed device can obtain better low-frequency isolation and mitigation performance by reasonably designing the
device parameters.

1. INTRODUCTION

Vibration is a common phenomenon in nature and engineer-
ing, and most of these vibrations are harmful. For example,
the vibrations generated by various disturbance sources, such
as the reaction wheels or momentum wheels on spacecraft, se-
riously affect the observation and imaging accuracy.1, 2 The
vibrations generated by manipulating tools can induce irre-
versible body injury for construction, engineering, agriculture
and mining workers.3, 4 The earthquake or wind-induced vi-
brations often lead to the damage of civil engineering struc-
tures.5, 6 The environmental vibrations or vibrations of the ma-
chine and equipment will reduce the machining precision.7, 8

Therefore, there is a strong demand for vibration suppres-
sion technology in engineering, especially in the field of high-
precision instruments such as aircraft, high precision satellite
and precision machine tools. The most common vibration sup-
pression method is vibration isolation. It is an effective mea-
sure for the suppression of vibration by installing vibration iso-
lation devices between the vibration sources and the sensitive
payloads to slow down the transmission of vibration. Vibration
isolation devices can be classified into passive vibration isola-
tion devices, active/semi-active vibration isolation devices, and
hybrid vibration isolation devices.9, 10 However, active/semi-

active and hybrid vibration isolation devices require additional
hardware, such as sensors, controllers, actuators and power
supplies, which increases the energy consumption and com-
plexity of these devices. These characteristics will limit the
applications of the active/semi-active and hybrid vibration iso-
lation devices. Passive vibration isolation devices are widely
used in vibration suppression due to their simple construction,
not having the above-mentioned disadvantages, and the ability
to work stably for a long period of time.11

For the traditional linear vibration isolation device, there is
a contradiction between the frequency range of isolation and
the support capacity. The stiffness of the device should be
reduced to achieve the faculty of isolating low-frequency vi-
bration. However, reducing the stiffness of the device will re-
sult in a reduction in its support capacity. The vibrations in
engineering practice generally contain harmful low-frequency
components, such as shock and random vibration loads.12, 13

Therefore, the design of a vibration isolation device that pos-
sesses an excellent low-frequency vibration isolation effect and
meets the load support requirements has attracted the atten-
tion of researchers. Some vibration isolation methodologies
have been proposed in recent decades, and the most repre-
sentative is the quasi-zero-stiffness (QZS) isolator with high
static and low dynamic stiffness.14, 15 The QZS isolator has
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been studied extensively and validated as an effective method
for low-frequency vibration isolation. The typical QZS isola-
tor is designed by connecting the negative stiffness element in
parallel with a matched positive stiffness element. Then the
quasi-zero stiffness is obtained around the equilibrium posi-
tion. The design of the negative stiffness mechanism is the
key to the design of the QZS device. Wang et al.16 proposed
the spring-linkage type QZS device in which the negative stiff-
ness in the vertical direction was obtained by two horizontal
springs in a compressed state and the linkages. Zhou et al.17–19

developed the cam-roller-spring type QZS isolator by adopt-
ing the conceptual design of cam–roller–spring mechanisms.
The mechanical characteristics of the device were analyzed
and, a six degree of freedom vibration isolation platform con-
sisting of the cam-roller-spring type QZS struts was also pro-
posed. Lian et al.20 proposed a micro-vibration absorber with
high static and low dynamic stiffness by designing the shape
of the buckled beam. The proposed micro-vibration absorber
has a low-frequency vibration absorption effect and multiple
working modes in multiple directions. Wu et al.21 devel-
oped a compact arrayed-magnetic-spring with negative stiff-
ness (AMS-NS) by arranging the cuboidal magnets as a rect-
angular array. The analytical and experiment results show that
the proposed AMS-NS possesses high negative stiffness den-
sity and can effectively broaden the vibration isolation band.
Yan G et al.22–24 proposed and systematically studied a series
of bio-inspired structures for low-frequency vibration isolation
by imitating animal’s legs and paws. These studies can pro-
vide a new approach to designing the low-frequency vibration
isolators.

The above-mentioned studies show that the proposed QZS
isolators can only work effectively under specific loads and
within a limited displacement range. Hence, broadening
the low-stiffness displacement range and supporting different
loads have recently become critical research topics. Zhao et
al.25, 26 modified the QZS device by increasing the number
of pairs of oblique springs. Then the low-stiffness displace-
ment range on the premise of satisfying the QZS condition
was broadened by optimizing the parameter of the modified
device. Similarly, Gatti et al.27 extended the low-stiffness dis-
placement range of the QZS device by changing the positive
stiffness element from a single vertical spring to the combina-
tion of two oblique springs. Chen et al.28 studied the deviation
of mass load on the dynamic properties of the QZS isolator.
They found that adjusting the positive stiffness configuration
can reduce the negative effect of the deviation of mass load
on the QZS isolator. Zheng et al.29 proposed a QZS isola-
tor composed of n series-arranged QZS elements to acquire
multiple QZS characteristics. Each QZS element consists of
a pair of semicircular arches and a pair of oblique beams and
exhibits quasi-zero-stiffness characteristics under various spe-
cific loads. QZS isolators are still a hot research topic in low-
frequency vibration isolation. Researchers are committed to
improving the performance of vibration isolators and have pro-
posed several high-performance vibration isolators.30–32

As mentioned above, the negative and positive stiffness
properties of isolators are typically achieved through ingenious
designs that incorporate mechanical springs and rigid compo-
nents. Especially for the positive stiffness part, mechanical
springs are usually used to support the object to achieve posi-
tive stiffness characteristics. Hence, the damping of these iso-

lators is small, and additional damping is usually required to
enhance vibration isolation performance. Viscous damping is
commonly used in these devices. However, adding viscous
damping devices will increase the complexity of the isola-
tor and deteriorate the vibration isolation effect in the high-
frequency region.33

The viscoelastic (VE) dampers are utilized as damping de-
vices in building structures, bridges, vehicles, and mechani-
cal equipment due to the excellent energy dissipation capacity,
simple fabrication, and low cost.34–38 To promote the appli-
cation and development of VE damping technology in vibra-
tion control, a number of experimental and theoretical stud-
ies on VE dampers have been conducted.39–42 However, there
are few studies on suppressing low-frequency vibration by us-
ing VE devices. Liu et al.43 studied the characteristics of a
QZS isolator by using the VE damper to provide damping and
the results showed that optimizing the damping ratio can ob-
tain superior isolation performance both at the resonant fre-
quency and high- frequency region. Hence, the principle of
quasi-zero stiffness can be adopted to improve the capacity for
suppressing the low-frequency vibration of VE vibration isola-
tion devices. Based on this idea, a new vibration isolation and
mitigation device to reduce low-frequency vibration by com-
bining the negative stiffness structure and VE damper, will be
designed in this paper.

This study proposes a VE low-frequency vibration isolation
and mitigation device by connecting the VE damper in parallel
with two oblique springs and dampers. Firstly, the design of
the proposed device is introduced. In this part, the VE damper
as the core component of the device is investigated experi-
mentally and theoretically. Property tests on the VE damper
under different excitations are conducted, and a mathemati-
cal model is adopted to describe the dynamic properties of the
VE damper. Then, the mechanical characteristics of the de-
vice are studied, where the effects of the system parameters on
the static properties and dynamic responses are discussed in
detail. Finally, the vibration isolation performances of the VE
low-frequency vibration isolation and mitigation device are an-
alyzed and discussed.

2. DESCRIPTION OF THE VE LOW-
FREQUENCY VIBRATION ISOLATION
AND MITIGATION DEVICE

2.1. Design of the Device
The VE low-frequency vibration isolation and mitigation de-

vice is shown in Fig. 1(a). The device was composed of two
oblique springs, two oblique dampers, and a VE damper. The
VE damper was mounted vertically to support the isolated ob-
ject. The two oblique springs had the same length and stiffness
and were assembled symmetrically. One end of the oblique
spring was hinged on the base frame, and the other end was
hinged on the loading support. Also, the two identical linear
dampers were assembled symmetrically, and the ends of the
damper were hinged on the base frame and loading support,
respectively. It should be noted that when the isolated object
was installed, the oblique springs and dampers are in a hori-
zontal position, and the oblique springs were in a compressed
state. This position was also known as the static equilibrium
position. When the isolated object moved vertically around the
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Figure 1. The physical model (a) and schematic diagram (b) of the VE low-frequency vibration isolation and mitigation device.

Figure 2. Dimensionless force (a) and dimensionless stiffness (b) for different el.

static equilibrium position, the oblique springs remain com-
pressed and provide negative stiffness to the device. The VE
damper provides positive stiffness and vertical damping to the
device.

2.2. The Negative Stiffness Structure
The negative stiffness structure was considered as in

Fig. 1(a), but the VE damper and oblique dampers were re-
moved. When the isolated object moves vertically from the
static equilibrium position, the oblique springs remain com-
pressed and generate vertical restoring force acting on the iso-
lated object. The restoring force of the system can be derived
as:

f = 2kh

(
1− L0√

(b− xh)2 + x2

)
x; (1)

where the kh is the stiffness of the oblique spring, L0 is the
original length of the oblique spring, x was the displacement of
the isolated object from the static equilibrium position, b was
the length when oblique springs were in the horizontal position
and the level adjustment devices were not adjusted, xh was the
adjusted displacement generated by level adjustment devices
in horizontal direction.

By using Lh0 = b − xh, f̂ = f
khL0

, x̂ = x
L0

, el = Lh0

L0
, the

Eq. (1) can be rewritten in non-dimensional form:

f̂ = 2

(
1− 1√

e2l + x̂2

)
x̂. (2)

To study the structural parameter el on the characteristics
of the negative stiffness structure, the relationship curves of
the non-dimensional restoring force and stiffness regarding the
non-dimensional displacement are shown in Figs. 2(a and b).
As el increased, the stiffness of the structure increased near
the static equilibrium position, which means the negative stiff-
ness decreased. Therefore, the stiffness of the negative stiff-
ness structure can be adjusted by changing the length of the
oblique springs in horizontal position.

2.3. The Mechanics Characteristics of the //
VE Damper

The VE damper was adopted to support the isolated ob-
ject and provide positive stiffness to the device. Also, the VE
damper had excellent energy dissipation capacity and can pro-
vide damping in the vertical direction. Many studies show that
the mechanical properties of VE dampers are complex and can
be affected by excitation frequency, excitation amplitude, and
ambient temperature. Therefore, in this part, property tests on
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Figure 3. Performance tests on VE damper (a) and the hysteresis curves at different frequencies (b).

Figure 4. Comparison on experimental results and model calculation results under different frequencies: (a) storage modulus and (b) loss factor.

the VE damper at different frequencies and displacement am-
plitudes are conducted, and a mathematical model is adopted
to describe the dynamic properties of the VE damper.

2.3.1. Tests on the VE Damper

The VE damper tested in this paper is shown in Fig. 3(a),
which was manufactured by vulcanization bonding two VE
layers between a middle steel plate and two constrained steel
plates. The VE material was based on the Nitrile Butadiene
Rubber. The performance tests on the VE damper had been
carried out in a servo-hydraulic testing machine, as shown in
Fig. 3(a). During the tests, the machine was controlled through
displacement control mode. Several cycles of sinusoidal exci-
tation with a fixed displacement amplitude and excitation fre-
quency were applied on the VE damper to obtain steady force-
displacement hysteresis curves in each test condition. The ex-
citation displacement amplitudes were 0.1 mm, 0.25 mm, and
0.5 mm, and at each amplitude, the excitation frequencies were
0.1 Hz, 0.5 Hz, 1 Hz, 2 Hz, 5 Hz, 8 Hz, and 10 Hz. The tests
were conducted at a room temperature of about 12◦C.

The force-displacement hysteresis curves can be obtained at

each test, and several representative hysteresis curves are plot-
ted in Fig. 3(b). The hysteresis curves were fully elliptical, and
the slope increases with increasing excitation frequency, which
indicates that the VE damper has good energy dissipation ca-
pacity and that its dynamic properties are significantly affected
by frequency.

The critical performance parameters of the VE damper can
be obtained from the hysteresis curves,44 such as storage mod-
ulus G1 and loss factor η. The storage modulus and the loss
factor of the VE damper at different frequencies are depicted
in Figs. 4(a and b). It can be obviously seen that the stor-
age modulus and the loss factor increase with increasing fre-
quency, while the effect of displacement amplitude on the dy-
namic properties of the VE damper was slight. The equivalent
stiffness keq and the equivalent damping ceq , which can char-
acterize the mechanical properties of the VE damper at differ-
ent frequencies, are depicted in Fig. 5. The equivalent stiff-
ness increased with increasing frequency, while the equivalent
damping sharply decreased with increasing frequency. The ef-
fects of displacement amplitude on the equivalent stiffness and
equivalent damping are slight.
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Figure 5. Comparison on experimental results and model calculation results under different frequencies: (a) equivalent stiffness and (b) equivalent damping.

2.3.2. The Mathematical Model of the VE Damper

The experimental results show that the dynamic properties
of the VE damper are affected by excitation frequency. To de-
scribe the dynamic properties of the VE damper, some math-
ematical models have been proposed, such as the Maxwell
model, Kelvin model, standard solid model, equivalent stan-
dard solid model, and fractional derivative model.45 Among
these models, the advantage of the fractional derivative model
is its ability to accurately describe the behavior of VE dampers
over a wide range of frequencies with fewer constants.46, 47

Hence, the fractional Kelvin model will be adopted to represent
the VE damper in this study. In this model, the VE damper is
simulated by using fractional calculus and consists of a spring
and a dash-pot connected in parallel, as shown in Fig. 1(b).

The constitutive equation of the fractional Kelvin model can
be expressed as:

fve = q0x(t) + q1D
p[x(t)]; (3)

where q0 and q1 are the coefficients related to the VE materials,
p was the fractional order, fve and x(t) were the restore force
and displacement of the VE damper, respectively, Dp[x(t)]
was the p-order derivative of x(t) to t, and the Caputo’s defi-
nition was adopted to define the fractional-order derivative. It
should be noted that 0 < p < 1, while p = 1 represented
the classical Kelvin model. By transforming Eq. (3) into the
frequency domain, the constitutive parameters of this model
under sinusoidal excitation can be expressed as:

G1 = q0 + q1ω
p cos(pπ/2);

G2 = q1ω
p sin(pπ/2);

η =
G2

G1
=

q1ω
p sin(pπ/2)

q0 + q1ωp cos(pπ/2)
; (4)

where the G1, G2 and η was the storage modulus, loss modu-
lus and loss factor of the VE material used in the VE damper,
respectively. ω was the excitation frequency.

To verify the accuracy of the mathematical model, the stor-
age modulus G1 and the loss factor η of the VE material were
calculated by Eq. (4) and compared with the test data. The

results at different frequencies are also shown in Fig. 4. The
numerical results are in good agreement with the experimental
results for the storage modulus G1 and the loss factor η. The
maximum errors of the storage modulus G1 and the loss factor
η are 13.64% and 12.51%, respectively. To further verify the
availability of the fractional Kelvin model, the equivalent stiff-
ness keq and the equivalent damping ceq of the VE damper can
be calculated by the following equations by referencing to the
related literatures:39, 44

keq =
nn ·Av

hv
G1 =

nn ·Av

hv

(
q0 + q1ω

p cos
(pπ

2

))
;

ceq =
nn ·Av

hvω
G2 =

nn ·Av

hv
q1ω

p−1 sin
(pπ

2

)
; (5)

where nn, Av and hv were the number of VE layers, the shear
area and the thickness of the VE layer, respectively. These
constants are related to the construction of the VE damper. The
comparison of the numerical results and experimental results
at different frequencies are shown in Fig. 5. The numerical
results for the equivalent stiffness and the equivalent damping
are in good agreement with the experimental results.

Hence, the fractional Kelvin model can precisely describe
the dynamic properties of the VE damper, and will be used to
model the VE damper in the low-frequency vibration isolation
and mitigation device in the following section.

3. MECHANICAL PROPERTIES OF THE
VE LOW-FREQUENCY VIBRATION
ISOLATION AND MITIGATION DEVICE

Figure 1(b) shows the schematic diagram of the model of
the VE low-frequency vibration isolation and mitigation de-
vice. The VE damper was represented by the fractional Kelvin
model, which can well describe the effect of the excitation
frequency on its properties, as studied in the previous sec-
tion. In this section, the mechanical characteristics of the VE
low-frequency vibration isolation and mitigation device will be
studied in detail.
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Figure 6. Dimensionless force (a) and dimensionless stiffness (b) for different α and el = 0.6.

3.1. Static Analysis
As shown in Fig. 1(b), the isolated object is in the static equi-

librium position, and the oblique springs are in the horizontal
position and compressed. The forces of the oblique springs
on the isolated object cancel with each other in the horizontal
direction, and the gravity force of the isolated object was sup-
ported by the VE damper. When the isolated object moves up
or down from the equilibrium position in the vertical direction
with displacement x, the restoring force of the device can be
written as:

F = kvx+ 2kh

(
1− L0√

L2
h0 + x2

)
x; (6)

where kv was the stiffness provided by the VE damper as
shown in Fig. 1.

Let α = kh

kv
and F̂ = F

kvL0
, Eq. (6) can be rewritten in

non-dimensional form:

F̂ = x̂+ 2α

(
1− 1√

e2l + x̂2

)
x̂. (7)

The dimensionless stiffness K̂ can be obtained by differen-
tiating Eq. (7) with respect to the dimensionless displacement
x̂:

K̂ = 1 + 2α

(
1− 1√

e2l + x̂2

)
+ 2αx̂2

(
e2l + x̂2

)− 3
2 . (8)

According to Eqs. (7) and (8), the dimensionless restoring
force and stiffness of the device are related to the stiffness
ratio α and the structure parameter el. To study the effects
of these parameters on the mechanical characteristics of the
device, the relationship curves of the dimensionless restoring
force and stiffness regarding the dimensionless displacement
for various parameters are depicted in Figs. 6 and 7, respec-
tively. It can be seen from Fig. 6 that the stiffness of the device
near the equilibrium position decreases as the stiffness ratio α
increases when the parameter el is constant. The stiffness in-
creases with increasing displacement in the small displacement

range. The minimum stiffness achieved at the static equilib-
rium position changes from positive to negative as the stiffness
ratio α increases. When the parameter α is constant, the stiff-
ness increases with increasing parameter el as shown in Fig. 7.
The stiffness near the equilibrium position changes from neg-
ative to positive as the parameter el increases.

It is worth noting that the stiffness of the device should be
greater than or equal to zero near the equilibrium position.
Then, the device can support the isolated object. Also, the
stiffness should be less than one near the equilibrium position,
which means the stiffness of the proposed device is lower than
that without a negative stiffness structure. Hence, the param-
eters α and el needed to be selected appropriately to gain the
minimal stiffness (i.e., zero stiffness) at the equilibrium po-
sition. By setting Eq. (8) equal to zero at x̂ = 0, the QZS
condition can be determined as:

α =
el

2(1− el)
. (9)

The relationship curves of the non-dimensional stiffness ver-
sus the non-dimensional displacement when the parameters α
and el satisfy Eq. (9) are depicted in Fig. 8. The stiffness is
zero at the equilibrium position. Near the static equilibrium
position, the stiffness first decreases and then increases as the
parameter α increases. Therefore, to achieve smaller stiffness
and a wider low stiffness interval near the equilibrium position,
it is necessary to reasonably select parameters α and el.

3.2. Dynamic Analysis

3.2.1. Dynamic Modeling

The dynamic equation of the VE low-frequency vibration
isolation and mitigation device was formulated, and its dy-
namic characteristics were analyzed in this section. The
schematic diagram of the dynamic model of the device is
shown in Fig. 1(b). Considering the base is excited by har-
monic excitation displacement y = Y0 cosωt, and the isolated
object M moved vertically with displacement x, the dynamic
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Figure 7. Dimensionless force (a) and dimensionless stiffness (b) for different el and α = 0.75.

Figure 8. Dimensionless stiffness-displacement curves.

equation of the system can be deduced as follows:

Mẍ+ kv(x− y) + 2kh

(
1− L0√

L2
h0 + (x−y)2

)
(x− y) +

cvD
p
t [x− y] + 2ch

(x− y)2(ẋ− ẏ)

L2
h0 + (x− y)2

= 0; (10)

where ch and cv were the damping coefficients of the oblique
damper and VE damper, respectively. Let z = x − y be the
relative displacement of the isolated object with respect to the
base, the dynamic equations can be reformulated as:

Mz̈ + kvz + 2kh

(
1− L0√

L2
h0 + z2

)
z + cvD

p
t [z] +

2ch
z2ż

L2
h0 + z2

= −Mÿ. (11)

Let ωn =
√

kv

M , ζh = ch
2Mωn

, ζv = cv
2Mωn

, Ŷ = Y0

L0
, and

ẑ = z
L0

. Equation (11) can be rewritten in dimensionless form

as:

¨̂z + ωn

(
1 + 2α

(
1− 1√

e2l + ẑ2

))
ẑ + 2ζvωnD

p
t [ẑ] +

4ζhωn
ẑ2 ˙̂z

e2l + ẑ2
= Ŷ0ω

2 cos(ωt). (12)

Equation (12) is highly nonlinear and difficult to solve di-
rectly. To simplify the subsequent dynamic analysis, the non-
linear restoring force and damping force needed to be approxi-
mated. The dimensionless restoring force expressed by Eq. (7)
can be approximated by using a third-order Taylor series ex-
pansion as:

F̂app =

(
1 + 2α− 2α

el

)
x̂+ αe−3

l x̂3. (13)

Similarly, the nonlinear damping ratio can be approximated as
ζh app = 2ζh

z2

e2l
.

The exact and approximate restoring force and damping ra-
tio are shown in Fig. 9. The approximate accuracy is related to
the displacement, the approximate restoring force and damping
ratio are almost identical with the exact one in a small range
of displacement. Thus, the approximate restoring force and
damping ratio can be used to replace the exact one for micro-
vibration conditions, and Eq. (12) can be rewritten as:

¨̂z + ω2
nη1ẑ + ω2

nη2ẑ
3 + 2ζvωnD

p
t [ẑ] + 2ζhωnη3ẑ

2 ˙̂z =

Ŷ0ω
2 cos(ωt); (14)

where η1 =
(
1 + 2α− 2α

el

)
, η2 = αe−3

l , η3 = 2
e2l

.

Here the Caputo’s definition is adopted to define the frac-
tional order derivative as:

Dp
t [z(t)] =

1

Γ(1− p)

∫ 1

0

z(u)

(t− u)p
du; (15)

where Γ(x) is Gamma function satisfying Γ(x+ 1) = xΓ(x).
When the system was in steady-state motion, the high-order

components of the movement can be neglected, and only the
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Figure 9. Comparison on exact results and approximate results: (a) dimensionless force and (b) normalized damping.

Figure 10. Comparison between the analytical and numerical response
amplitudes.

first-order component was considered, then the fractional order
derivative in Eq. (14) can be approximated as:48

Dp
t [z(t)] = ωp−1 sin

(pπ
2

)
ż(t) + ωp cos

(pπ
2

)
z(t). (16)

It can be seen from Eq. (16), that the fractional order deriva-
tive term exhibits both the damping and stiffness properties,
which is consistent with the equivalent stiffness and equiva-
lent damping of VE dampers as analyzed in Section 2.3. Then,
Eq. (14) can be rewritten as:

¨̂z + ω2
nη1ẑ + ω2

nη2ẑ
3 + 2ζvωn(θ1ẑ + θ2 ˙̂z) + 2ζhωnη3ẑ

2 ˙̂z =

Ŷ0ω
2 cos(ωt); (17)

where θ1 = ωp cos
(
pπ
2

)
, θ2 = ωp−1 sin

(
pπ
2

)
.

To analyze the dynamic characteristics of the device, the ap-
proximate analytical solution of Eq. (17) was solved by em-
ploying the harmonic balance method,49 and the amplitude-
frequency characteristic equation of the system was derived.
Assuming the steady-state response of displacement has the

form:
ẑ(t) = Z0 cos(ωt− ϕ). (18)

It can be substituted in Eq. (17). By setting the coefficient
of the same harmonics equal and neglecting the higher order
harmonics, one can obtain the following equations:

− ω2Z0 cos(ϕ) + ω2
nη1Z0 cos(ϕ) +

3

4
ω2
nη2Z

3
0 cos(ϕ) +

2ζvωnωθ2Z0 sin(ϕ) + 2ζvωnθ1Z0 cos(ϕ) +

1

2
η3ζhωnωZ

3
0 sin(ϕ) = Ŷ0ω

2;

− ω2Z0 sin(ϕ) + ω2
nη1Z0 sin(ϕ) +

3

4
ω2
nη2Z

3
0 sin(ϕ)−

2ζvωnωθ2Z0 cos(ϕ) + 2ζvωnθ1Z0 sin(ϕ)−
1

2
η3ζhωnωZ

3
0 cos(ϕ) = 0. (19)

Then, by eliminating the ϕ with sin2(ϕ) + cos2(ϕ) = 1, the
amplitude-frequency response relationship of the system can
be obtained as:(
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)
Z2
0 = Ŷ 2

0 ω
4. (20)

The amplitude-frequency response curves as shown in
Fig. 10 can be analytically obtained based on Eq. (20). In
order to verify the precision of analytical solution as above
mentioned, Eq. (12) is solved numerically by employing the
fractional order extended state equation method.50 It can be
seen that the analytical results agree well with the numerical re-
sults. Also, the approximate equation of the system, as shown
in Eq. (17), is solved by employing the Runge–Kutta method,
and the results are plotted in Fig. 10. Numerical results of
Eq. (12) and Eq. (17) are also in great agreement with each
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Figure 11. Effects of parameters on dynamic response characteristics: (a) effects of fractional order, (b) effects of excitation amplitude, (c) effects of horizontal
damping ratio, (d) effects of vertical damping ratio, and (e) effects of stiffness ratio and structure parameter.
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other. Hence, the amplitude-frequency response results can be
used to analyze the dynamic characteristics of the system and,
both Eq. (12) and Eq. (17) can be used to directly solve the
dynamic response of the system.

3.2.2. Effects of Parameters on the Amplitude-
Frequency Responses

It can be seen from Eq. (20), that the amplitude-frequency
responses are mainly concerned with the excitation displace-
ment amplitude Ŷ0, the horizontal damping ratio ζh, the verti-
cal damping ratio ζv , the fractional order p, the stiffness ratio
α and the structure parameter el. It should be noted that the
stiffness ratio α and the structure parameter el need to satisfy
Eq. (9) to ensure that the device obtains quasi-zero stiffness
characteristics at the equilibrium position. In this section, the
numerical analysis method based on Eq. (20) is used to inves-
tigate the influences of different Ŷ0, ζh, ζv , p, α and el on the
amplitude-frequency responses, and the results are depicted in
Fig. 11. In the numerical example, the natural frequency ωn is
set to 1, and the other parameters are shown in Table 1.

The influence of the fractional order p on the amplitude-
frequency response is plotted in Fig. 11(a). As the fractional
order p decreases, the maximum amplitude increases, and the
bending degree of the amplitude-frequency curve is more se-
vere. It can be easily explained by Eq. (5) that the smaller the
fractional order p is, the smaller the equivalent damping is and
the larger the equivalent stiffness is. It is well known that, for a
vibration isolation system, the lower stiffness means lower res-
onance frequency and higher damping means smaller response
amplitude.

Figure 11(b) shows the effects of the excitation ampli-
tude on the amplitude-frequency response. As the excitation
amplitude increases, the maximum amplitude increases and
the amplitude-frequency response curve bends more severely.
When the excitation amplitude is small, the jump phenomenon
of the amplitude-frequency response curve almost disappears.
It means that the device has better vibration isolation perfor-
mance under small excitation displacements.

Figure 11(c) shows the effects of the horizontal damping ra-
tio on the amplitude- frequency responses. The maximum am-
plitude decreases rapidly with increasing horizontal damping.
Moreover, the horizontal damping ratio almost does not affect
the amplitude response outside the resonant frequency range.

Figure 11(d) shows the effects of the vertical damping ratio
on the amplitude-frequency responses. The smaller the vertical
damping ratio is, the larger the maximum amplitude is. Addi-
tionally, the resonance region shifts to the left when the ver-
tical damping ratio decreases. This is because the equivalent
damping and the equivalent stiffness become smaller when the
damping ratio decreases, which will result in lower resonance
frequency and larger response amplitude. These conclusions
are the same as the results in the traditional vibration isolation
system.

Figure 11(e) shows the effects of the stiffness ratio α and
structure parameter el on the amplitude-frequency response.
Here the α and el satisfied the relationship of Eq. (9) to ensure
the stiffness of the device at the equilibrium position was zero.
Different combinations of α and el have a large effect on the
amplitude-frequency response. As el increases, the maximum
amplitude decreases firstly and then increases, and the skeleton

Figure 12. Displacement transmissibility of the proposed device and the VE
damper.

of the amplitude-frequency response curve moves to left firstly
and then to right. The skeleton of the amplitude-frequency
response curve represents the resonance characteristics of the
nonlinear vibration isolation system, which is very important
for the design of the vibration isolation system. Hence, a rea-
sonable combination of α and el need to be selected in the
design of the device.

4. VIBRATION ISOLATION PERFORMANCE
ANALYSES OF THE VE LOW-
FREQUENCY VIBRATION ISOLATION
AND MITIGATION DEVICE

4.1. Absolute Displacement Transmissibility
Analysis

The displacement transmissibility was used as an index to
reflect the vibration isolation performance of the system. It
was defined as the ratio of the amplitude of the absolute dis-
placement of the isolated object to the amplitude of the base
displacement. The absolute displacement transmissibility of
the system can be expressed as:

Td =
|z + y|
|y|

=

√
Z2
0 + Y 2

0 + 2Z0Y0 cos(ϕ)

Y0
. (21)

To verify the low-frequency vibration isolation performance
of the proposed device, its absolute displacement transmissi-
bility was compared with that of a device without the oblique
springs and dampers. It can be seen from Fig. 1, that the vibra-
tion isolation and mitigation device became a VE damper by
removing the oblique springs and dampers. Hence, by letting
ζh = 0 and α = 0, Eq. (13) became the dynamic equation of
the system only with a VE damper. Similarly, the displacement
transmissibility of the system can be obtained.

The absolute displacement transmissibility curves of the
proposed device and the VE damper for different parameters
are shown in Fig. 12. The initial isolation frequencies of the
proposed device are significantly lower than those of the VE
damper. For example, when the fractional order is 0.5, the
initial isolation frequency reduces from 1.533 to 0.6104 by
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Table 1. The parameters of the dynamic responses and displacement transmissibility analysis.

Case Fractional order Displacement amplitude Horizontal damping ratio Vertical damping ratio Stiffness ratio α

p Ŷ0 ζh ζv and structure parameter el
1 0.3, 0.5, 0.8, 1.0 0.1 0.05 0.1 0.75 and 0.6
2 0.5 0.05, 0.10, 0.15, 0.20 0.05 0.1 0.75 and 0.6
3 0.5 0.1 0.02, 0.05, 0.10, 0.12 0.1 0.75 and 0.6
4 0.5 0.1 0.05 0.02, 0.05, 0.10, 0.15 0.75 and 0.6
5 0.5 0.1 0.05 0.1 0.2143 and 0.3, 0.5 and 0.5,

0.75 and 0.6, 2 and 0.8

60.18%. When the fractional order is 1.0, the initial isolation
frequency reduces from 1.424 to 0.2209 by 84.49%. Addi-
tionally, the peak values of the resonance region of the pro-
posed device are also much lower than those of the VE damper.
This indicates that the VE low-frequency visitation isolation
and mitigation device can effectively reduce the initial isola-
tion frequency and the peak value of resonance, and the vi-
bration isolation performance in the low-frequency region is
significantly better than those of the VE damper. It is because
the stiffness of the proposed device with a negative stiffness
structure is small, so the damping ratio is high, which leads to
a lower resonance frequency and resonance response.

To investigate the effects of parameters on the vibration iso-
lation performance of the proposed device, the absolute dis-
placement transmissibility curves of the proposed device for
different parameters are plotted in Fig. 13. The parameters
used in the analysis are the same as those used in Section 3.2.2
and are shown in Table 1.

In Fig. 13(a), it is evident that as the fractional order in-
creases, the initial isolation frequency decreases, the peak
value in the resonance region decreases significantly, and the
high-frequency transmissibility increases slightly. The initial
isolation frequency reduces from 0.7119 to 0.2209, as the
fractional order increases from 0.3 to 1.0. Meanwhile, the
jump phenomenon of the absolute displacement transmissibil-
ity curve almost disappears when the fractional order is large.

In Fig. 13(b), the effects of the excitation amplitude on the
transmissibility are shown. As the excitation amplitude in-
creases, the initial isolation frequency increases and the trans-
missibility in the resonance region also increases significantly.
The initial isolation frequency increases from 0.4667 to 1.02
when the fractional order increases from 0.05 to 0.2. This re-
sult is different from that of the linear vibration isolator, where
the transmissibility is not affected by the excitation amplitude.
To ensure better vibration isolation performance at low fre-
quency, it was necessary to limit the usage scenario for the
device, especially for the excitation amplitude.

Figures 13(c) and (d) illustrate the effects of horizontal and
vertical damping on the transmissibility, respectively. Increas-
ing horizontal damping results in a significant decrease in the
peak value of displacement transmissibility in the resonance
region, while it has little impact on the initial isolation fre-
quency and high-frequency transmissibility. Vertical damping
has a notable effect on absolute displacement transmissibility.
As vertical damping increases, the initial isolation frequency
increases and the peak value of transmissibility in the reso-
nance region decreases significantly. For instance, as the verti-
cal damping ratio increases from 0.02 to 0.15, the initial isola-
tion frequency increases from 0.4837 to 0.7 by 44.78%.

Figure 13(e) shows the effects of the stiffness ratio α and
structure parameter el on the transmissibility. It is evident that
different combinations of α and el values have a significant

effect on transmissibility. As el increases, the initial isolation
frequency and the peak value of the transmissibility in the res-
onance region decrease first and then increase. Therefore, it
is important to select a reasonable combination of α and el to
achieve better vibration isolation performance for the device.

4.2. Time Responses to Harmonic
Excitations

To verify the vibration isolation capability of the proposed
device more intuitively, time history responses of the abso-
lute displacement are analyzed. Moreover, time history re-
sponses of the VE damper (the vibration isolation device with-
out oblique springs and dampers) are also simulated for com-
parison with those of the VE low-frequence vibration isolation
and mitigation device. The simulations are carried out under
the harmonic vibration excitation with fixed displacement am-
plitude and different excitation frequencies, as shown in Ta-
ble 2. The parameters of the vibration isolation system are set
as follows: M = 10.6 kg, kv = 420 N/m, kh = 315 N/m,
L = 50 mm, ζh = 0.05, ζv = 0.10, p = 0.5. The abso-
lute displacement responses of the two devices are shown in
Fig. 14.

It can be seen from Fig. 14 that the displacement responses
are slightly amplified in the low-frequency region for the pro-
posed device due to the resonance effect. For example, when
the excitation frequency is 0.1 Hz and 0.2 Hz, the displace-
ment amplitude of the isolated object increases from 5 mm to
6.55 mm and 6.125 mm, respectively. The displacement am-
plitude of the object isolated by the proposed device is also
slightly larger than that isolated by the VE damper. When the
excitation frequency further increases, the displacement am-
plitude of the object isolated by the proposed device decreases
obviously and is less than the excitation displacement ampli-
tude. For example, when the excitation frequency is 0.5 Hz, the
displacement amplitude decreases from 5 mm to 1.33 mm by
73.4%, and the vibration isolation phenomenon occurs. On the
contrary, the displacement amplitude of the object isolated by
the VE damper increases from 5 mm to 6.57 mm by 31.40%,
and the displacement response is still amplified. It shows that
the initial isolation frequency of the proposed device is lower
than that of the VE damper. This is because the stiffness of the
proposed device is smaller than that of the VE damper. Under
the excitation frequency of 1.0 Hz, the displacement amplitude
of the object isolated by the proposed device further decreases
from 5 mm to 0.44 by 91.20%. However, the displacement
amplitude of the object isolated by the VE damper is signif-
icantly amplified and increases from 5 mm to 61.03 mm by
1120%. This is because the natural frequency of the vibration
isolation system consisting of only the VE damper is about
1 Hz, and the system is in the resonance region. When the ex-
citation frequency is 2.0 Hz, the displacement amplitude of the
object isolated by the proposed device and the VE damper both
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Figure 13. Effects of parameters on displacement transmissibility: (a) effects of fractional order, (b) effects of excitation amplitude, (c) effects of horizontal
damping ratio, (d) effects of vertical damping ratio and (e) effects of stiffness ratio and structure parameter.
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Table 2. The displacement amplitude of the proposed device and VE damper.

Displacement amplitude Frequency The VE low-frequency vibration isolation and mitigation device VE damper
(mm) (Hz) Amplitude (mm) Rate of change Amplitude (mm) Rate of change

0.1 6.55 31% 5.05 1%
0.2 6.13 22.50% 5.2 3.90%

5 0.5 1.33 73.40% 6.57 31.40%
1 0.44 91.20% 61.03 1120%
2 0.17 96.60% 1.87 62.60%

reduce, and the displacement amplitude of the object isolated
by the proposed device reduces more significantly. To more
clearly analyze the vibration isolation performance of the pro-
posed device and the VE damper, the displacement amplitude
and its variation of the isolated object are also listed in Table 2.

Therefore, the proposed VE low-frequency vibration isola-
tion and mitigation device can effectively reduce the initial iso-
lation frequency and broaden the isolation frequency interval.

5. CONCLUSIONS

This paper proposes a VE low-frequency vibration isolation
and mitigation device by connecting a VE damper in paral-
lel with two oblique springs and dampers. Firstly, the me-
chanical characteristics of the negative stiffness part consist-
ing of two oblique springs and the positive stiffness part con-
sisting of a VE damper are studied, respectively. Then, the
effects of the system parameters on the stiffness displacement
relationship and amplitude-frequency responses are discussed
in detail. Finally, the vibration isolation performance of the
VE low-frequency vibration isolation and mitigation device
is evaluated by investigating the displacement transmissibil-
ity and time history responses. The main conclusions can be
obtained as follows:

(1) Compared with the isolation device that only consists of
a VE damper, the proposed VE low-frequency vibration
isolation and mitigation device can effectively reduce the
initial isolation frequency and broaden the isolation fre-
quency interval.

(2) Horizontal damping is beneficial to improve the vibra-
tion isolation performance of the device, and the hori-
zontal damper should be considered when the device is
designed.

(3) The vibration isolation performance of the device is
greatly affected by the excitation amplitude, and it can
achieve excellent vibration isolation performance under
the condition of small excitation amplitude.

(4) The mechanical parameters of the VE damper, such as the
fractional order, the equivalent stiffness, and the equiva-
lent damping have a great influence on the vibration iso-
lation performance of the proposed device. Therefore,
the VE material and the structure of the VE damper can
be optimized to obtain more appropriate parameters to
achieve excellent isolation performance of the device.

The system parameters significantly affect the proposed
device’s dynamic responses and vibration isolation perfor-
mances. By selecting a reasonable combination of parameters,
a device with good low-frequency isolation performance can
be designed. This study is of great guiding significance for
designing the low-frequency vibration isolation device. And

future work can be focused on the experimental verification of
the theoretical results.
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