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Magnetorheological dampers (MRDs) are widely used in the field of engineering vibration control. The accurate
identification and prediction of their output forces are crucial for optimizing control strategies. However, tradi-
tional analysis methods based on mechanical models and empirical formulas have many limitations. This study
proposes an innovative deep-learning approach. First, the continuous wavelet transform (CWT) is employed to
convert the one-dimensional signals of MRD output force into two-dimensional time-frequency maps. Then, a
convolutional neural network (CNN) is employed for feature extraction and type identification, and a CWT-CNN
model is constructed. This model achieves 100% accuracy on the test dataset. In addition, by combining the local
feature extraction ability of CNN and the sequence modeling advantage of the long short-term memory network
(LSTM), a CNN-LSTM model is built to predict the MRD output force. The results show that compared with
CNN and LSTM, the CNN-LSTM model exhibits stronger generalization ability. It outperforms the other models
in comprehensive performance, as evaluated by MSE, RMSE, MAE, MAPE, and R². This study provides an effec-
tive technical means for the identification and prediction of MRD output forces and promotes the application and
development of deep learning in this field.

NOMENCLATURE
MRDs: Magnetorheological dampers
CWT: Continuous wavelet transform
CNN: Convolutional neural network
LSTM: Long short-term memory network
RNN: Recurrent neural network
MSE: Mean Squared Error
RMSE: Root Mean Squared Error
MAE: Mean Absolute Error
MAPE: Mean Absolute Percentage Error
R2: Coefficient of determination
T-SNE: T-Distributed Stochastic Neighbor Embedding
AP: Average pooling
MP: Max pooling

1. INTRODUCTION

Magnetorheological dampers (MRDs), a key component in
intelligent materials, exhibit excellent performance in engi-
neering vibration control and are widely used in fields such
as seismic protection of building structures, bridge vibration
reduction, and vehicle suspension systems.1–5

The output characteristics of MRDs are influenced by mul-
tiple factors, including excitation amplitude, vibration fre-
quency, and control current or voltage. Precise identification
and prediction of an MRD force are crucial for optimizing con-
trol strategies and enhancing vibration control effectiveness.

Traditional methods for analyzing MRD output, such as an-
alytical methods based on mechanical models and empirical
formula-based methods, have numerous limitations when deal-
ing with complex working conditions. Mechanical models, of-
ten based on simplified assumptions, fail to accurately describe
the nonlinear behavior of MRDs in practical applications. Em-
pirical formulas, on the other hand, rely heavily on specific
experimental conditions and lack universality. With the rapid
development of deep learning technology, its powerful feature
extraction and data modeling capabilities have provided new
insights and methods for solving the problems of identifying
and predicting MRD output.

In the realm of mechanical models and empirical formulas
for MR materials, numerous scholars have conducted exten-
sive and representative research, encompassing performance
prediction, reverse design, parameter identification, and vibra-
tion control optimization. Liao et al.6 addressed the uncer-
tainty in the relationship between magnetic current and natural
frequency of magnetorheological elastomer (MRE) dynamic
vibration absorbers (DVAs) caused by material nonlinearity.
They proposed a stiffness tuning algorithm based on phase dif-
ference, which can rapidly track the excitation frequency and
exhibit high efficiency in vibration control. Ren et al.7 con-
structed a deep learning framework integrating generators and
predictors for the rapid reverse design of MREs. By optimiz-
ing the loss function, they solved the problem of multiple so-
lutions in reverse design, providing an efficient tool for the in-
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dustrialization of MREs in fields such as vibration control and
soft machinery. Furthermore, Ren et al.8 proposed the MD-
CBA model, which combines magnetic dipole theory with a
CNN-BiLSTM-Attention architecture, for predicting the mag-
netically induced shear storage modulus of MREs under small
sample data. The transfer performance of the model under dif-
ferent silicone oil contents and loading frequencies verified its
generalization ability, offering an efficient method for charac-
terizing MRE performance. Guo et al.9 investigated the influ-
ence of particle swarm optimization (PSO) algorithm param-
eters on the parameter identification accuracy of MRD mod-
els. By analyzing the optimal combination of parameters such
as the number of particles, number of iterations, and learn-
ing factors, they achieved the highest accuracy in predicting
the damping force of the hyperbolic tangent model. Bedoya-
Zambrano et al.10 proposed a novel controller combining the
NSGA-II genetic algorithm with fuzzy logic for optimizing the
control force of MRD in three-dimensional frame structures.
Comparative studies validated its advantages in vibration con-
trol of complex structures. Lv et al.11 tackled the issue of dis-
crepancies between the rheological properties of magnetorhe-
ological fluids (MRFs) at high shear rates and the test data at
low shear rates. They proposed the exponential linear mixing
analysis (ELMA) model, which can accurately predict the be-
havior of MRFs at extremely high shear rates.

Among the many deep-learning models, the convolutional
neural network (CNN) can automatically extract local fea-
tures from data when processing images and signals, achiev-
ing remarkable results in related fields.12, 13 However, when
faced with the dynamically changing vibration signals of
MRDs, CNN has limitations in capturing long-term depen-
dencies in the signals. The long short-term memory network
(LSTM),14, 15 an optimized version of the recurrent neural net-
work (RNN),16, 17 has successfully overcome the problems of
gradient vanishing and explosion through its innovative gating
mechanism. When processing time-series data, LSTM demon-
strates excellent long-term information-memory capabilities.
Nevertheless, LSTM is relatively weak in local feature extrac-
tion.

In view of this, this study innovatively proposes a phased
and comprehensive research plan. First, the continuous
wavelet transform (CWT) is utilized to deeply process the out-
put force of MRD, converting one-dimensional signals into
two-dimensional time-frequency diagrams that contain rich
time-frequency information. This conversion not only expands
the feature dimensions of the signals but also provides more
valuable input for the subsequent CNN model. Based on these
time - frequency diagrams, the CNN can efficiently extract the
key features of MRD output, enabling precise identification of
MRD output. On this solid foundation, a CNN-LSTM model is
further constructed. By fully integrating the powerful feature-
extraction ability of CNN and the excellent time-series mod-
eling advantage of LSTM, the CNN-LSTM model is used to
predict the MRD output. Through a systematic comparison
of the performance of CNN, LSTM, and CNN-LSTM models
in MRD output identification and prediction tasks, this study
aims to provide a scientific and accurate basis for model selec-
tion in engineering practice, and strongly promote the in-depth

application and development of deep-learning technology in
the field of MRD vibration control.

2. MECHANICAL TEST DATA OF THE MRD

Experiments were conducted to study the dynamic charac-
teristics of a certain model of MRD produced by Lord Corpo-
ration in the United States. The excitation signal was a sine
wave, with excitation amplitudes set at 5 mm, 10 mm, and
15 mm respectively, and the vibration frequencies were set at
0.5 Hz, 1.0 Hz, 2.0 Hz, and 3.0 Hz, and the control currents of
the MRD were set at 0 A, 0.1 A, 0.2 A, 0.3 A, 0.4 A, 0.5 A,
0.6 A, 0.7 A, 0.8 A, 0.9 A, and 1.0 A. Figure 1 and 2 show
the mechanical characteristics of the MRD under three excita-
tion amplitudes, four excitation frequencies, and eleven control
currents.

Figure 3 presents the full-sample time series of the MRD
output force. The data are arranged as follows: at a frequency
of 0.5 Hz, with amplitudes of ±5 mm/±10 mm/±15 mm, the
output forces of the MRD with input currents ranging from 0 A
to 1 A are given. Similarly, at a frequency of 1.0 Hz, for ampli-
tudes of ±5 mm/±10 mm/±15 mm, the corresponding MRD
output forces with input currents from 0 A to 1 A are included.
The same pattern applies to the cases at 2.0 Hz and 3.0 Hz fre-
quencies, where for amplitudes of ±5 mm/±10 mm/±15 mm,
the MRD output forces with input currents from 0 A to 1 A are
presented respectively.

3. IDENTIFICATION OF MRD FORCE

In the realm of engineering applications involving MRDs,
accurately identifying their output is of great significance. This
section delves into the methods and processes for precisely de-
termining the output of MRDs, aiming to provide a compre-
hensive understanding and effective approach to this crucial
aspect.

3.1. CWT
CWT is a time-frequency analysis method designed for

time-varying and non-stationary signals.18, 19 It can transform
one-dimensional vibration signals into two-dimensional time-
frequency depictions, which encompass information from both
the time and frequency domains.

Unlike the short-time Fourier transform, which uses a fixed
window function, the continuous wavelet transform employs
an adjustable window function. This function can achieve a
balance between time and frequency resolution when analyz-
ing non-stationary signals.

For an arbitrary signal x(t), its continuous wavelet trans-
form is defined as:

Xω(u, v) =∫ +∞

−∞
x(t)φu,v(t)dt =

1√
v
·
∫ +∞

−∞
x(t)φ

(
t− u

v

)
dt. (1)

Here, u represents the translation factor, which decides the po-
sition of the wavelet window in the time domain. v is the scal-
ing factor, which modifies the size of the wavelet window and
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Figure 1. Experimental results of the mechanical characteristics of the MRD (part one). (a) Frequency = 0.5 Hz, amplitude = 5 mm; (b) Frequency = 0.5 Hz,
amplitude = 10 mm; (c) Frequency = 0.5 Hz, amplitude = 15 mm; (d) Frequency = 1.0 Hz, amplitude = 5 mm; (e) Frequency = 1.0 Hz, amplitude = 10 mm; (f)
Frequency = 1.0 Hz, amplitude = 15 mm
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Figure 2. Experimental results of the mechanical characteristics of the MRD (part two). (g) Frequency = 2.0 Hz, amplitude = 5 mm; (h) Frequency = 2.0 Hz,
amplitude = 10 mm; (i) Frequency = 2.0 Hz, amplitude = 15 mm; (j) Frequency = 3.0 Hz, amplitude = 5 mm; (k) Frequency = 3.0 Hz, amplitude = 10 mm; (l)
Frequency = 3.0 Hz, amplitude = 15 mm
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Figure 3. Full-sample time series of the MRD output force.

its position in the frequency domain. φu,v(t) is the wavelet
basis function (also known as the parent wavelet), and it is ex-
pressed as:

φu,v(t)dt =
1√
|u|

φ

(
t− v

u

)
u > 0. (2)

In this research, the complex Morlet wavelet is chosen as the
basis function for the continuous wavelet transform.

3.2. CNN
CNN is a type of feed-forward neural network that draws

inspiration from the biological visual perception mechanism.
It stands as one of the classic algorithms in the realm of deep
learning.

The CNN model primarily consists of three core compo-
nents: the convolutional layer, the pooling layer, and the fully
connected layer (Fig. 4). What sets it notably apart from tradi-
tional neural networks is that in the convolutional layer, CNN
replaces a matrix multiplication with convolution operations. It
allows the local receptive field to scan across the entire dataset
through sliding convolution, which substantially cuts down the
number of parameters in the network. The specific convolution
calculation formula is as follows:

xj
i = f

(∑
k=1

W j
i ∗xj−1

i + bji

)
. (3)

Here, xj
idenotes the i-th feature of the output value of the j-th

layer, W j
i represents the weight matrix of the i-th convolution

kernel of the j-th layer, xj−1
i is the (j−1)-th output layer, and

bji is the bias term.
The pooling layer, also known as the down-sampling layer,

is mainly utilized to reduce the parameters of the neural net-
work. Commonly used pooling functions are average pooling
(AP) and max pooling (MP).20, 21 Their mathematical expres-
sions are as follows:

P
l(i,j)
AP =

1

W

jW∑
t=(j−1)W+1

al(i,t); (4)

P
l(i,j)
MP = max

(j−1)W+1≤t≤jW

{
al(i,t)

}
bi. (5)

In these equations, W represents the width of the pooling
area, pl(i,j) is the activation value of the t-th neuron in the i-th
frame of the l-th layer, and al(i,j) represents the pooling result.

The fully connected layer is mainly for further feature ex-
traction. The features obtained from the last pooling layer are
flattened into one-dimensional feature vectors. These vectors
are then fed into the classifier after undergoing non-linear ac-
tivation by the ReLU function.

3.3. Proposed CWT-CNN
This research put forward a multi-source vibration recog-

nition approach named CWT-CNN. It leverages the CWT to
transform one-dimensional signals into two-dimensional time
- frequency depictions, thus making it possible to represent
vibration feature information. These two-dimensional time-
frequency depictions are then fed into the CNN, which au-
tonomously extracts relevant features. Eventually, the Softmax
layer classifies the vibration type. The detailed procedures are
as follows:

• The initially collected vibration data is randomly split ac-
cording to the specified sample length.

• The CWT is employed to turn one-dimensional signals
into two-dimensional time-frequency depictions.

• The obtained time-frequency depictions are proportion-
ally separated into training and test datasets.

• A CNN model is constructed, and its parameters are ini-
tialized.

• The time-frequency depictions of the training dataset are
input into the convolutional layers for model training, and
the optimal model parameters are saved.

• The test dataset is input into the model for classification,
and the classification outcomes and accuracy are assessed.

The architecture of the proposed CWT – CNN model in this
research is presented in Fig. 5. First, the CWT technique is
utilized to convert the one-dimensional vibration signal into
a two - dimensional time-frequency image. Next, the two-
dimensional time - frequency images are input into the con-
volutional layer of the CNN to automatically extract features.
Finally, the vibration type is recognized via the SoftMax layer.

The CWT-CNN identification process for the MRD force is
summarized in Fig. 6.

From 3 MRD force datasets, 60 samples are extracted for
each type, resulting in a total of 180 samples. Each sample
contains 1,024 sampling points, which are transformed into
64×64 sample graphs to act as model inputs. The dataset is
then divided into training and test datasets at a ratio of 3:1.

T-Distributed Stochastic Neighbor Embedding (T-SNE) is
a highly effective nonlinear dimensionality reduction tech-
nique. It is employed to map high-dimensional data into a
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Figure 4. Schematic diagram of the CNN structure.

Figure 5. Basic structure of CWT-CNN model.

Figure 6. CWT-CNN identification process for the MRD force.

low-dimensional space, facilitating its visualization.22, 23 In or-
der to visually assess the performance of the proposed model,
T-SNE is utilized for visual analysis.

The visualization outcomes of the initial training set data are
illustrated in Fig. 7. Here, 3 different colors are used to denote

the 3 various inputs within the dataset (the three different MRD
output inputs here refer to the classification based on different
amplitudes: ±5 mm, ±10 mm, and ±15 mm). The results
demonstrate that the distribution of the original data are rather
chaotic. There is a substantial overlap among the force signals
from the 3 categories, rendering it infeasible to classify and
identify MRD force solely based on the original data.

Figure 8 shows the visualization results of the data that have
been processed by the CWT-CNN model. When compared
with the original data, the processed data show a decreased
level of disarray. They exhibit a tendency towards greater or-
derliness, and the features from different categories have be-
come more distinguishable.

The classification performance of the model is depicted
through a confusion matrix. As is evident from Fig. 9, the
model attains an accuracy rate of 100% on the test dataset. This
indicates its proficiency in accurately differentiating between
various MRD force types.

4. PREDICTION OF MRD FORCE

In the field of engineering vibration control, accurately pre-
dicting the output of MRDs is a crucial task. Given the com-
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Figure 9. Confusion matrix for classification results. The accuracy rate at the
test set is 100%.

Figure 10. LSTM cell structure. 24

plex and variable factors that affect MRD output, such as ex-
citation amplitude, vibration frequency, and control current,
precise prediction can help optimize control strategies and en-
hance the overall performance of vibration control systems.
This section focuses on exploring and presenting methods for
predicting the output force of MRDs, providing valuable in-
sights and effective solutions for relevant engineering applica-
tions.

4.1. LSTM
For signals with time-scale periodicity, earlier signals can

influence later signals. Nevertheless, traditional neural net-
works typically fail to take this influence into account. As a
result, they often struggle to yield satisfactory outcomes when
dealing with such signals.

To address this issue, scholars proposed the RNN. Inside
the RNN, neurons form loops. When processing time-series
signals, these loops can preserve earlier-time information for
use in later-time calculations.16, 17

Building on the RNN, scholars further developed the LSTM
model. This model incorporates a gating mechanism to reg-
ulate the information state. It allows the network to retain
significant information and discard unimportant information,
thereby resolving the issue of gradient vanishing/explosion
that might arise in the RNN model.

The schematic illustration of the LSTM unit is presented in
Fig. 10. Its central part is the section where ct−1 is transferred
to ct t the top of the figure. This section is commonly re-
ferred to as the cell state, which persists throughout the entire
LSTM chain system. It can store some long-term memory in-
formation and represents the key distinction between LSTM
and traditional RNN.

Its calculation formula is as follows:

ct = ft · ct−1 + it · c̃t. (6)

In the given formula, ct and ct−1 represent the state vectors of
the memory unit at time instants t and t−1 respectively. Their
dimensions are set manually. The c̃t is the updated value of the
cell state at time t. The ftand it are the forget gate and input
gate at time t correspondingly.

All the elements in these two vectors range from 0 to 1.
Specifically, ft is in charge of discarding certain elements of
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the state vector ct−1 from the previous time step, while it is
responsible for introducing the effective elements from the cur-
rent state update value c̃t. It's important to note that when mul-
tiplying the gate vector with the state vector, it's an element-
wise multiplication, not matrix multiplication.

The computational approaches for ft, it, and c̃t are as fol-
lows:

ft = σ (Wf · [ht−1, xt] + bf ) ; (7)

it = σ (Wi · [ht−1, xt] + bi) ; (8)

c̃t = tanh (Wc · [ht−1, xt] + bc) ; (9)

where ht−1 is the output of the unit at the previous moment;
xt is the input of the unit at this moment. These two vectors
are jointly used as the input for calculating the forget gate ft,
the input gate it , and the cell state update value c̃t; Wf , Wi,
and Wc are the weights for calculating ft, it, and c̃t, respec-
tively; bf , bi, and bc are the biases for calculating the above
three variables. Since the elements in the forget gate ft and
the input gate it need to take values between the interval [0,
1], the activation function used to calculate these two variables
is the sigmoid activation function, which is represented as σ in
the formula; ht−1 is the output of the unit at time t − 1 and
also the input of the unit at time t. Its calculation method is as
follows:

ot = σ (Wo · [ht−1, xt] + bo) ; (10)

ht = ot · tanh (ct) . (11)

Here, ht−1 refers to the output of the unit at the prior time step,
and xt is the input of the unit at the current time. These two
vectors are combined as the input for computing the forget gate
ft, the input gate it, and the cell state update value c̃t; Wf , Wi,
and Wc are the respective weights for calculating ft, it, and c̃t,
while bf , bi, and bcare the biases for these three variables.

4.2. Proposed CNN-LSTM
CNN and LSTM have unique strengths in signal recogni-

tion and classification. CNN is good at focusing on the local
features of signals, whereas LSTM can capture the sequential
features within them. In this research, CNN and LSTM are
connected in a series arrangement. First, CNN is applied to
extract the local features of the signal, and then LSTM takes
over to further process these extracted features.

In prediction tasks, CNN usually starts by extracting the
spatial or local features from the input data. After that, the
feature sequence obtained by CNN is sent to LSTM. LSTM
views these feature sequences as a time series. With its gating
mechanism and memory units, LSTM models the temporal re-
lationships within the feature sequence, detecting the changing
trends and patterns of features over time. Once the whole se-
quence is processed, LSTM produces a prediction result based
on the learned features and temporal relationships. This pre-
diction can be a single-value prediction for the next time point

or a sequence prediction for multiple future time points, de-
pending on the needs of the prediction task.

In the training phase, the prediction results are compared
with the actual labels to calculate the loss function. Then, the
backpropagation algorithm is used to update the parameters of
both CNN and LSTM. This allows the model to constantly ad-
just and enhance its prediction accuracy. The prediction prin-
ciple of CNN-LSTM makes full use of CNN's strong feature-
extraction ability and LSTM's excellent sequence-modeling
ability, giving it outstanding performance in handling data pre-
diction tasks with both spatial and temporal features.

The prediction principle of CNN-LSTM combines the ben-
efits of the CNN and the LSTM. The convolutional layer is
the key part of CNN. It performs convolutional operations by
moving the convolutional kernel across the data. Each convo-
lutional kernel only focuses on a small area, which is called
local perception. Also, the convolutional kernel uses the same
weights across the entire image or data, greatly reducing the
number of model parameters and the computational burden,
and improving the training efficiency and generalization abil-
ity. Through the combination of multiple convolutional and
pooling layers, CNN can automatically extract features at dif-
ferent levels from the data. The early convolutional layers can
extract basic features like edges and corners. As the network
layers increase, the later convolutional layers can gradually ex-
tract more advanced and abstract features, such as parts of an
object and its overall shape.

The core of LSTM is its memory unit, which can store long-
term information. Moreover, LSTM has three gating mecha-
nisms: the input gate, the forget gate, and the output gate. The
forget gate decides how much information to remove from the
previous time step's memory unit; the input gate determines
how much of the current input information to store in the mem-
ory unit; the output gate decides how much of the information
in the memory unit to pass on to the current time step's hidden
state. LSTM can effectively deal with long-term relationships
in sequential data. For the input sequential data, it processes
each time step one by one. By using the gating mechanism to
selectively remember and forget information, LSTM can cap-
ture the complex relationships between different time steps in
the sequence and model the long-term trends and patterns of
the sequence.

The schematic of CNN-LSTM is shown in Fig. 11.
For the basic parameter settings of CNN, LSTM, and CNN-

LSTM, the 'Adam' optimization algorithm was adopted, the
maximum number of training epochs was set to 300, the initial
learning rate was 0.001, the training set accounted for 0.8, and
the test set accounted for 0.2. Table 1 shows the parameter
settings of the CNN, LSTM, and CNN-LSTM models.

The evaluation index comparisons of the training set and test
set for the three methods are listed in Table 2, and the main
metrics are plotted in Fig. 12 as a radar chart for a very intuitive
comparison.

A more intuitive comparison of the performance of the three
models in terms of different evaluation metrics on the training
and test sets can be made from Table 1 and Fig. 12, further
validating the conclusions drawn from the previous analysis:
the CNN performs well in terms of accuracy on the training
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Figure 11. Schematic diagram of CNN-LSTM.

Table 1. Parameter Settings of CNN, LSTM and CNN-LSTM Models.

Model Layer Number of Convolutional Number Pooling Activation
Type of Layers Kernel Size Filters/Kernel Size Function

CNN

Input Layer 1 - - - -
Convolutional Layer 1 [3×1] 16 - -

Batch Normalization Layer 1 - - - -
ReLU Layer 1 - - - ReLU

Max Pooling Layer 1 [2×1] - [2×1] -
Fully Connected Layer 1 1 - 25 - ReLU
Fully Connected Layer 2 1 - 1 - -

Regression Layer 1 - - - -

LSTM

Input Layer 1 - - - -
LSTM Layer 1 - 25 - -
ReLU Layer 1 - - - ReLU

Fully Connected Layer 1 - 1 - -
Regression Layer 1 - - - -

CNN-LSTM

Input Layer 1 - - - -
Convolutional Layer 1 1 [2×1] 32 - -

Batch Normalization Layer 1 - - - -
ReLU Layer 1 1 - - - ReLU

Max Pooling Layer 1 1 [2×1] - [2×1] -
Convolutional Layer 2 1 [2×1] 32 - -

Batch Normalization Layer 1 - - - -
ReLU Layer 2 1 - - - ReLU

Max Pooling Layer 2 1 [2×1] - [2×1] -
Convolutional Layer 3 1 [2×1] 32 - -

Batch Normalization Layer 1 - - - -
ReLU Layer 3 1 - - - ReLU

Max Pooling Layer 3 1 [2×1] - [2×1] -
Flatten Layer 1 - - - -
LSTM Layer 1 - 42 - -

Dropout Layer 1 - - - -
Fully Connected Layer 1 - 1 - -

Regression Layer 1 - - - -

set, the LSTM shows relatively weaker performance across the
board, and the CNN-LSTM exhibits a significant advantage in
generalization ability on the test set. Without considering the
training time, the comparison of the prediction results of the
CNN, LSTM, and CNN-LSTM models is as follows:

4.2.1. Comparison of accuracy metrics

Training Set: The CNN has a Mean Squared Error (MSE)
of 185.4936, a Root Mean Squared Error (RMSE) of 13.6196,
and a Mean Absolute Error (MAE) of 8.9282. In these three
metrics, the values of the CNN are smaller than those of the
LSTM and CNN-LSTM, indicating that it has the smallest er-
ror margin between the predicted and true values on the train-
ing set, and thus the highest prediction accuracy. In terms of
the Mean Absolute Percentage Error (MAPE), the MAPE of
the CNN-LSTM is 6.3902%, lower than 7.9381% of the CNN

and 10.3031% of the LSTM. This means that the CNN-LSTM
has the smallest relative error on the training set.

Test Set: The CNN-LSTM has an MSE of 495.6884, an
RMSE of 22.2641, and an MAE of 16.2566, all of which are
lower than those of the CNN and LSTM. This demonstrates
that it has higher prediction accuracy on the test set. Mean-
while, the MAPE of the CNN-LSTM is 4.6503%, much lower
than that of the other two models, indicating that the relative
deviation between its prediction results and the true values are
the smallest.

4.2.2. Comparison of model goodness-of-fit

Training Set: The coefficient of determination (R2) of the
CNN is 99.949%, higher than 99.9311% of the LSTM and
99.9036% of the CNN-LSTM. This shows that the CNN has
the best fitting effect for the training set data, and the model
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Table 2. Parameter Settings of CNN, LSTM and CNN-LSTM Models.

Models Training set Test set
MSE RMSE MAE MAPE R2 MSE RMSE MAE MAPE R2

CNN 185.4936 13.6196 8.9282 7.9381% 0.99949 983.2891 31.3574 16.1813 8.5482% 0.998553
LSTM 255.261 15.9769 9.5646 10.3031% 0.999311 1834.25 42.8281 19.5966 16.3361% 0.997304

CNN-LSTM 376.9153 19.4143 14.4463 6.3902% 0.999036 495.6884 22.2641 16.2566 4.6503% 0.999322

Figure 12. Radar chart of comparison of evaluation indicators for CNN,
LSTM and CNN – LSTM.

can explain most of the variations in the training data.

Test Set: The R2 of the CNN-LSTM is 99.9322%, higher
than 99.8553% of the CNN and 99.7304% of the LSTM. This
implies that the CNN-LSTM has the best fitting effect for the
test set data and can better reflect the internal laws of the test
data.

4.2.3. Comprehensive comparison

The CNN shows outstanding prediction accuracy on the
training set. Most of its error metrics (except for MAPE) in-
dicate a high prediction accuracy for the training data, and it
also has the highest goodness-of-fit. This suggests that it can
effectively learn the characteristics of the training data.

The LSTM shows relatively poor performance in all indica-
tors on both the training and test sets. Whether it is prediction
accuracy or goodness-of-fit, it is inferior to the CNN and CNN-
LSTM.

The CNN-LSTM demonstrates strong generalization ability
on the test set. Its error metrics perform best on the test set,
and its goodness-of-fit is also the highest. Although its accu-
racy on the training set is not the optimal, it can better adapt to
unknown data, which indicates that it may have better perfor-
mance in practical applications.

Figure 13 shows the comparison between the true MRD
force and the predicted one on the training set and test set based
on CNN-LSTM.
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Figure 13. MRD force prediction using CNN – LSTM. (a) Training set. (b)
Test set

5. CONCLUSION

This study successfully applies deep learning technology to
the identification and prediction of MRD output force, effec-
tively overcoming the limitations of traditional analysis meth-
ods and opening new avenues for research and applications in
this field.

In terms of methodological innovation, the CWT was used
to preprocess the time series of MRD output. This transformed
the data into two - dimensional time-frequency diagrams rich
in time-frequency information, providing more valuable input
for the CNN. As a result, the CNN was able to extract the key
features of MRD force more precisely, enabling efficient iden-
tification of MRD output. Meanwhile, the constructed CNN-
LSTM model fully integrated the powerful local feature - ex-
traction ability of the CNN and the excellent time-series mod-
eling advantage of the LSTM, offering a more reliable method
for predicting MRD force.

In the performance evaluation of the MRD output prediction
models, the CNN-LSTM demonstrated unique advantages. Al-
though the CNN had high accuracy on the training set, with
excellent performance in various error metrics and the highest
goodness-of-fit, which allowed it to learn the characteristics of
the training data well, this also posed a risk of overfitting to
the training data. The LSTM, on the other hand, had relatively
weak overall performance on both the training and test sets,
with certain limitations in capturing local signal features and
handling complex data. In contrast, the CNN-LSTM model
exhibited strong generalization ability on the test set. Its error
metrics were the best among the models on the test set, and its
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goodness-of-fit was also the highest. This fully demonstrated
its ability to effectively integrate the local feature-extraction
ability of the CNN and its own excellent time-series model-
ing ability. Even when faced with unknown data that differed
significantly from the training data, the CNN-LSTM could ac-
curately capture data features and predict MRD output pre-
cisely, showing remarkable adaptability. This advantage gives
the CNN-LSTM great potential in practical engineering appli-
cations. In fields such as building structure seismic protection,
bridge vibration reduction, and vehicle suspension systems, the
CNN-LSTM is expected to provide more reliable support for
optimizing MRD control strategies through its powerful per-
formance, thereby effectively improving vibration control ef-
ficiency and advancing technological development in related
fields.

The results of this study have significant guiding implica-
tions for engineering practice. They provide a scientific basis
for optimizing MRD control strategies, contribute to signifi-
cantly enhancing vibration control effectiveness, and promote
the in-depth application and innovative development of deep
learning technology in the field of MRD vibration control.

Looking ahead, there is still much work to be done. On one
hand, the model structure and parameters can be further opti-
mized, and the model performance under more complex work-
ing conditions and environments can be explored to enhance
the model's adaptability and robustness. On the other hand,
attempts can be made to extend the methods of this study to
more types of intelligent material devices or systems, expand-
ing the application scope of the research results. Additionally,
by combining with other cutting-edge technologies such as re-
inforcement learning and transfer learning, it is expected to
further improve the performance and application value of the
model, providing more powerful technical support for the de-
velopment of related fields.

Looking ahead, the MRD output force identification and
prediction technology proposed in this research holds promis-
ing applications across multiple critical domains. In the realm
of smart buildings and seismic protection, the integration of
CWT for time-frequency analysis with the real-time predic-
tive capabilities of the CNN-LSTM model will enable adap-
tive regulation of dynamic damping forces in high-rise struc-
tures, bridges, and similar infrastructures during earthquakes
or strong winds. By precisely identifying vibration patterns
and pre-emptively predicting force outputs, this technology
will significantly enhance structural safety against seismic and
wind-induced forces. Within the automotive and rail transit
sector, the technology will adeptly respond to dynamic sce-
narios such as varying road undulations and track irregulari-
ties, enabling rapid optimization of MRD damping forces in
suspension systems. Leveraging the 100% accuracy of CWT-
CNN in vibration pattern recognition, it will facilitate real-time
monitoring of vehicle operational status and early fault detec-
tion, thereby improving ride comfort and operational stability.
In precision manufacturing and research facilities, the model's
high sensitivity in identifying and predicting micro-vibrations
will deliver ultra-precise vibration control for vibration-critical
environments like semiconductor lithography equipment and
quantum laboratories. This will effectively suppress environ-

mental micro-disturbances, ensuring the precision of experi-
ments and manufacturing processes. Furthermore, when in-
tegrated with IoT technologies, the technology will become
an integral part of smart city vibration monitoring networks.
It will enable comprehensive vibration status sensing and co-
ordinated control across building complexes and transporta-
tion hubs, providing data-driven decision support for the health
management and disaster prevention of large-scale infrastruc-
ture. These application scenarios all capitalize on the tech-
nology's core strengths in processing complex dynamic sig-
nals, achieving high-precision predictions, and demonstrating
strong generalization capabilities. They are poised to drive the
industrial upgrading of MRDs in the field of intelligent vibra-
tion control.
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