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A precise acoustic vibration characteristic model of a cylindrical shell with anisotropic mechanical material was
established based on three-dimensional elasticity theory and state space vector, and the accuracy of the analytical
model was verified by comparing it with finite element results. By analogy with the concept of metamaterials,
the modulus of the mechanical material is artificially changed to negative and complex numbers with extraordi-
nary properties. Based on the acoustic vibration characteristic model, the influence of material parameters on the

radiative noise transfer characteristics of anisotropic mechanical material cylindrical shells is studied.

1. INTRODUCTION

Thin-walled cylindrical shells are widely used in the main
load-bearing structures of aerospace, underwater ships, trans-
portation and other equipment. While meeting the static load-
bearing capacity, they must also have good vibration and
acoustic performance. At present, cylindrical shell structures
mainly use viscoelastic damping materials to dissipate energy
and reduce vibration noise. In the medium and high fre-
quency bands, the elastic wave wavelength is small, and the
viscoelastic damping material produces a large shear deforma-
tion, which has an outstanding vibration reduction and noise
reduction effect. However, in the low frequency band, the elas-
tic wave wavelength is large, and the viscoelastic damping ma-
terial has a small deformation, resulting in little vibration re-
duction effect. In order to further improve the safety, reliabil-
ity and service capability of equipment, it is urgent to develop
new low-frequency vibration and noise reduction methods for
cylindrical shell structures.

Fluid-loaded cylindrical shell structures usually use a vis-
coelastic damping layer to reduce their acoustic radiation. Lin'
and Laulagnet et al.” studied the radiated acoustic power of
a cylindrical shell with a damping layer in a flow field. The
damping layer was simplified to a damping spring model,
and its characteristics were characterized by complex stiff-
ness. Laulagnet et al.> also studied the acoustic radiation of
a cylindrical shell partially covered with viscoelastic damp-
ing material in a fluid. The radiated acoustic power and mean
square velocity of the shell surface were calculated based on
the Green function and modal expansion method. Through
numerical analysis, it was found that selecting the appropri-
ate damping layer stiffness can reduce the acoustic radiation
of the composite shell in a wide frequency band. Cuschieri
et al.* established a two-dimensional model of a cylindrical

shell with a circumferential viscoelastic damping layer, ignor-
ing the axial interaction. The study found that the circumfer-
ential modes of the shell are mutually coupled, and the edge
of the viscoelastic damping layer will affect the radiated sound
field. Heil et al.’> also used a two-dimensional shell model to
study the sound radiation of a cylindrical shell with an incom-
pletely covered viscoelastic damping layer, considering the ef-
fect of the surrounding fluid domain on the viscoelastic damp-
ing layer, and found that when the covering gap is small, it will
not significantly affect the radiation field unless the viscoelas-
tic damping layer exhibits strong fluid-coupled oscillations at
a specific frequency. Furthermore, Laulagnet et al.® estab-
lished a more complex analytical model based on the three-
dimensional Navier equation of the viscoelastic damping layer,
taking into account the interaction forces in the circumferen-
tial, axial and radial directions, and studied the influence of
more parameters such as the mass of the damping layer and
the hydrostatic compression factor on the sound radiation. The
results showed that the smaller the Young’s modulus of the
damping layer and the higher the analysis frequency, the more
beneficial it is to vibration and noise reduction.

In addition, by analyzing the stiffness of the cylindrical
shell, Ai Haifeng et al.” proposed increasing the local struc-
tural stiffness of the double-layer ribbed cylindrical shell,
which has a significant effect on reducing the local vibration
and low-frequency noise radiation of the underwater cylindri-
cal shell structure. Xia Qiqiang et al.® added mass blocks
to the ring ribs to form impedance enhancement components
based on structural resistance enhancement technology. The
results showed that adding a suitable mass block to the ring
ribs close to the excitation source can effectively reduce the
radiated sound power of the dominant mode of the cylindri-
cal shell structure. Shen Shungen et al.® studied the coupling
characteristics of the raft structure with viscoelastic damping
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Figure 1. Schematic diagram of laying anisotropic mechanical material cylindrical shell model.

material and the acoustic medium, and reduced the acoustic ra-
diation performance of the hull by designing a structure of up-
per vibration isolator-raft structure with viscoelastic material-
lower vibration isolator-base hull-external flow field. Cao et
al.!” proposed a new active control method for the acoustic ra-
diation of a cylindrical shell under axial excitation, using a pair
of piezoelectric stack force actuators installed on the shell and
parallel to the axial direction to reduce the acoustic radiation
of the cylindrical shell structure.

At present, laying damping materials can effectively sup-
press the medium and high frequency vibrations of the struc-
ture, but the control effect on low frequency vibrations is mini-
mal. Local resonance mechanical metamaterials have the abil-
ity to control large wavelength low frequency fluctuations, pro-
viding a new idea for low frequency vibration reduction and
noise reduction of cylindrical shell structures. Local resonance
mechanical metamaterials usually manifest as changes in ma-
terial parameters. When the material parameters are negative,
elastic waves become evanescent waves that cannot propagate
within the frequency range of negative numbers. When the
material parameters are complex numbers, the loss of elastic
waves can be achieved, which achieves the purpose of vibra-
tion reduction and noise reduction. Therefore, this paper es-
tablishes an analytical model of the acoustic-vibration char-
acteristics of a cylindrical shell with anisotropic mechanical
materials, further introduces the design concept of metamate-
rials, changes the material parameters of the mechanical ma-
terial to negative or complex numbers, and gives it extraor-
dinary properties. It mechanistically verifies the possibility
of metamaterial design for low-frequency vibration and noise
reduction, and provides guidance for the realization of low-
frequency elastic wave control of cylindrical shells.

2. ANALYTICAL MODELING

Based on the three-dimensional elastic theory and state
space vector, the motion equation of the cylindrical shell laid
with anisotropic mechanical materials was established. Then,
combined with the force and displacement boundary condi-
tions, the acoustic-vibration characteristic model of the cylin-
drical shell laid with anisotropic mechanical materials under
fluid coupling was obtained. The calculation expressions of
the sound power level are given to measure the sound radiation
performance of the overall structure.

2.1. Laying Out the Equations of Motion for
Cylindrical Shells Made of Anisotropic
Mechanical Materials

Assume that the length of the cylindrical shell of anisotropic
mechanical material is L, the radius of the shell section is a, the
thickness is h, the radius of the mechanical material section is
b, and the two ends are simply supported on semi-infinite rigid
cylindrical baffles. The structure is placed in infinite water, as
shown in Fig. 1. Traditional methods usually regard mechani-
cal materials as fluid modeling, but they only consider the ra-
dial longitudinal wave effect of mechanical materials on the
shell. In fact, the mechanical material has interaction forces
on the shell in the radial, circumferential and axial directions.
This is 04, 0rg, and oy

Therefore, the three-dimensional elastic equation is used to
strictly describe the motion state of the mechanical material,
and the relatively accurate Fliigge shell theory is used to de-
scribe the motion of the cylindrical shell of the anisotropic me-
chanical material:

1
Lyiu+ Liov + Ligw = ———7-0r2;
ppf{‘ph
Loyu+ Laov + Logw = ————07¢; 1
ppc%h [ (1
Laiu + L3gv + Lazw = ——(f + 0y );
pCph

in which p,, is the density of the fluid, ¢, = \/E/(pp(1 — v?))
is the plane wave velocity, F and v are the Young’s modulus
and Poisson’s ratio of the shell, respectively, and f is the exter-
nal excitation force. The coefficients of the equation of motion
are:
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where 3 = h?/(12a?). Based on the simply supported bound-
ary conditions, the shell displacement can be expressed as fol-
lows in the form of mode superposition:

1

z) = Z i i US,, sin (n(b + %) cos kmz;

a=0n=0m=1
1

“YYY

a=0n=0m=1

amy |,
Vo, COS (ngf) + 7) sin k,p, 2;

1

z) = Z Z Z W sin (nqb + %) sin kp, z;

a=0n=0m=1
3)

in which U, V., W< are the modal expansion coeffi-
cients in three directions, k,, = mn /L is the axial wave num-
ber, a is 0 or 1, representing the circumferential antisymmetric
or symmetric mode, and 0 < z < L. The displacement of
the mechanical material and the force on the shell can also be

written as the following modal superposition form:

Z Z Z use, sm( + %) cos kp, z;

aOnOml

Up = Z Z Z Ver cos ( + ag) sin k,, 2; @)

a On Om 1

Up = Z Z Z W, sin ( + %) sin kp, 2;

a=0n=0m=1

1
Tra = Z i Z o sin (n(b + %) cos kpyz;

a=0n=0m=1

Orgp = Z i i F,‘l’,ﬁo‘ cos (ngb + %) sinknz;  (5)

a=0n=0 m:l

Opp = Z Z Z F7r% sin (ngb + %) sin kp, 2.

a=0n=0m=1

Substituting Egs. (3) and (5) into Eq. (1), according to the
modal orthogonality, the motion equation of the cylindrical
shell with anisotropic mechanical materials in the modal space
can be obtained:

$11 S12 S13 U
821 S22 S23 Vi | =
s31 s32 s33| \Wion
a . (~Fo
e 0 + o cZh —Fote | (6)
PP\ Fom L Fo

The elements in the coefficient matrix are expressed as:
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The modal coefficient F;> can be obtained based on the
modal orthogonality of the external excitation force f(¢, 2).
Assuming that there is a radial concentrated excitation force
with a value of fy at the surface (¢, 29) of the cylindrical

shell, the expression is:

fo

f(¢,2) = —=3(¢ — ¢0)d(2 — 20)- ®)

Then its modal coefficient can be written as:

2
—— fosin (n¢o+ﬂ) sin(kn,20), «@=0;
mal 2

F, =
nm QT
(mﬁo—&—?) sin(kmzp), a=1;

)

in which, when n = 0, itis &,, = 1, when n # 0, itis g, = 2,
and the corresponding F5, of other forms of excitation force
can be calculated simllarly

2.2. Establishing the Transfer Relationship
Between Mechanical Materials and
Shells Based on State Space Vectors

The interaction force in Eq. (6) can be obtained from the
stress relationship in the structure. The constitutive relation-
ship of orthotropic mechanical materials in the cylindrical co-
ordinate system can be expressed as:

Orr Cn Ci2 Ciz 0 0 0 Err

Opo Clg 022 023 0 0 0 Epo

0.2\ [Ciz Cag C33 0 0 0 €22

O¢z 0 0 0 044 0 0 254)2

Oy 0 0 0 0 Csxs 0 2e,,

Org 0 0 0 0 0 Ces 2er4
(10)

In the small deformation assumption, the structural geomet-
ric relationship in the cylindrical coordinate system is:

. _ Ou, . 1% . _ Ou,
TT_@T’ PP — 8(;5 zz—az7
_10u, | Oug  ug.
o= T T
Ou,  Ou, _ Oug | Ou,
287“2_5—'_?7 25¢z—$+ra¢y (11)
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in which u;, 05, and €;; represent the displacement, stress and
strain of the mechanical material respectively, and C;; repre-
sents the elastic constant of the medium.

Substituting Eq. (11) into Eq. (10) yields the relationship
between stress and strain of mechanical materials:

Opr = Cll% + Ci2 (7118((;2; + I:j) + C’laaau;;
%¢=Cw%7+Cb(i%§+}f)+C%%f;
Oz = C13% + Cas (71"%1;5 + 1;;) + Oy 381;2;
oor = (524 55)
orz = Css (88117 + 6;?) ;

1 duy. % _ u¢> (12)

s = Cos (T 19} * or r

Under the condition of no body force, the equilibrium equa-
tion of the body force of the mechanical material unit is:

0oy laam 00z Opp — Ogpg 52u,~.

or 1 0¢ 0z r P
Bam 180’@1) 80¢Z 20r¢ _ p82u¢.

or r O¢ 0z r o2’

0oy, 100y, 00., 0y B 0%,

or + r 0¢ + 0z + - P (13)

Substituting Eqgs. (4) and (5) into Egs. (12) and (13), we can
obtain:
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Assume the state vectors of stress and displacement are:
D(r) = {Unn (1), Ve (r), Wis, (), F752 (),

? nm
Fgoo(r), Fgre(m} (5)
According to the constitutive relationship and geometric re-
lationship of the material in the cylindrical coordinate system,
substituting it into the state space Eq. (15), the ordinary differ-
ential equation can be expressed as:
d

—D(r) = P(r)D(r);

dr (16)

in the formula, the matrix P (r) can be written as Eq. (17).
The state space vectors of the shell and mechanical materials
are expressed in the form of exponential solutions:

ra4r
D(r,) = e(’"a*’“b)P(iz b)D(rb), (18)
ing cCa—roP(5) _ | T Tuz|
Assuming e b 2 Ty, Topl’ T;jisald x3

matrix, we can get the transfer relationship between the me-
chanical material and the shell:

Ur?ma 'rct;lnb
Vnama Vs%b
Wn?ém,a — |:T11 T12:| Wrifr);Lb 19)
Foma Tor T | o
Fove Eyoe
o Fomi

2.3. Continuity Boundary Conditions on
Contact Surfaces of Anisotropic
Mechanical Materials

The boundary conditions of mechanical material motion are
analyzed below. At the interface between the shell and the
mechanical material (r = a), the continuity conditions of the
displacement of the mechanical material and the shell are met,
and in the modal space, there are:

Wi lr=a= Wi

m nm?

cx — [N
Vet |rma=V,

ca _ I
m nm? Unm IT:a_ Unm

(20)

At the interface between mechanical material and fluid (r =

b), the boundary conditions of stress continuity and displace-

ment continuity are met, and the following relationship holds
in the modal space:

Fn lrmv= =Pl lr=v; ™ == 0;

E7it == 03 Wil = WIS rmss @D)
the sound pressure amplitude is expressed as:

PT{’I?LI) = W,{,?lbznmm = _iwwrj:;jlbznmm; (22)
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1
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in which Z,,,,., is the acoustic radiation impedance of the me-
chanical material surface, which can be expressed as follows:

2pcbmmam? / N ' ( X) d
enk3L? \/1_7 (mz)2)2 %
0<x<1;
anm = X
2pcbmma? / Nnm(x) d
e k32 /71 = — (mzyee
x> 1
(23)
k.L )
4 cos? BeX m is an odd number;
4 sin? CT’ m is an even number;

in which k. = w/c = /k2+ (v/R)? is the number
of sound waves in the fluid, variable x = k;/k., then
v = keR1=x2% ke = /R = = X% Za(y) =
il (v)/ Hy(ll),(v), aY represents the first-order n-th Han-
kel function, pc is the wave impedance in the infinite fluid
medium, and c represents the speed of sound waves in the fluid.
For a given w, k, can only be a real number or an imaginary
number.

When 0 < x < 1, thatis k, < k., v and k, are both real
numbers, the sound wave propagates in the form of traveling
waves. From the recursive formula, we can get:

HV () = Ju(y) + Y (7);
HY'0) =5 [A00) - B )] e
Therefore, Z,, () in Eq. (23) can be written as:
e
Zu(3) = m 0. - i) @6
in which:
On(y) =
2Jn (V) [Yon-1(7) = Y41 (0] = Yo (W) [In—1(7) = Tns1(7)].
[Jn—1(V) = a1 (M + [Yo-1(7) = Yni1 (7)) ’
(27)
Cul() =
—2J5 (N [In=1(7) = Int1 (V)] + Yo (V) [Yn-1(7) = Yot1(7)]

]+
[Jn-1(7) = Tns1(M]? + [Yn-1(7) =

When x > 1, thatis k, > k., v = i and k, are imaginary
numbers, the sound wave degenerates into an attenuated non-
uniform wave along the radial direction, then Z,, () in Eq. (23)
can be written as:
2K,(6)
Z,(i6) =
(i9) = 5

0+ Ky ()

where K, (9) is the improved Hankel function.

The radiation impedance Z,,,,,,, represents the self-radiation
impedance. When solving the infinite integral in the self-
radiation impedance Eq. (23), it is found that the integrand
has a high-order singularity. There are two singular points 1
and mm/(k.L) in the integrand expression. In order to accu-
rately obtain the integral result, the integral interval is divided
into small intervals according to the singular points, and the
integral value is accumulated and calculated to obtain the the-
oretical calculation result of the acoustic radiation impedance.

Furthermore, according to the continuity boundary condi-
tion, Eq. (19) can be rewritten to obtain:

(29)

U;lea z%b
Vnama 7;:76:11)
Ws‘ma _ T11 T12 WT(i;);Lb
sl {T21 T 0 (30)
Fooa 0
Frma 1w Znmm Wi
Decomposing Eq. (30) yields:
UrOLéma Uﬁno;zb
Vima ¢ = (T1n +TiA) ¢ Vx5 (31)
Wﬁma ﬁ%b
Ema Unmb
Fggo b = (T + TaA) Q Vo, o (32)
Fma romb
0 0 0
where matrix A = |0 0 0 , inverting Eq. (31) and
0 0 wZumm
substituting it into Eq. (32) yields:
Fma Unima
Fg9% 5 = (Ta1 + TosA) (T1y + Ti2A) " Vi, o
Fma Wina
(33)
~F o
Rt =B Rl
Forts Fore,
U'r(Lxma
B (T21 + T22A) (T11 + T12A)71 Vnama 3 (34)
Wa

nma
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-1 0 0
where matrix B = | 0 -1 0
0 0 -1
into Eq. (6), we obtain:

, substituting Eq. (34)

S11 S12 S13
S21 S22 523

 B(Ty1+T5A)(T1+T1A) !

2
S31 S32 833 Preyh
Vi = 0 ». (35
W) P | Fg,

The above equation is the motion equation of the cylindri-
cal shell with anisotropic mechanical material under fluid-solid
coupling. Solving Eq. (35) can obtain the radial displacement
W5 .. of the cylindrical shell with anisotropic mechanical ma-
terial.

The radiated sound power can be expressed as:

27

L
1
p(w) = §/adgp/Re
0 0

(o) (o)
—Re (Z > Wom Znmm Wi

n=0m=1

w*(p,2)) dz =

> ;o (36)

in which, “*” represents a conjugate complex number and S is
the surface area of the shell. The sound power level is used to
measure the sound radiation performance and is defined as:

p(w)
L, =10log ———5.
w =100 = 37)
Substituting the radial displacement W . of the cylindrical

shell with anisotropic mechanical material obtained in the pre-
vious section into Egs. (36) and (37), the radiated sound power
level can be obtained, and then the acoustic vibration charac-
teristics of the cylindrical shell with anisotropic mechanical
material can be analyzed.

3. CONFORMANCE VERIFICATION

Traditional methods usually ignore the effect of shear waves
and model mechanical materials as fluids. In order to further
verify the effectiveness of laying anisotropic mechanical ma-
terial cylindrical shells, an analytical model of the acoustic vi-
bration characteristics of isotropic mechanical material cylin-
drical shells based on fluid equivalence was first established
and compared with the numerical model. It is easy to find that
the acoustic field in the external fluid satisfies the Helmholtz
equation:

V2po + kgpo = 0; (38)

in which g = w/cy, ¢ is the fluid sound velocity.
The acoustic field in mechanical materials also satisfies the
Helmholtz equation:

V2 + kip = 0; (39)
in which k; = w/¢y, ¢ is the longitudinal wave velocity in
mechanical materials. The thickness and length of mechanical
materials are limited, and standing waves are formed in the
radial direction, which can be expressed by a combination of

Bessel functions. The mode in the axial direction should be the
same as the shell mode, so the formal solution of the acoustic
field in the mechanical material can be written as:

Z Drm,1 (1) sin <n9 + a%r) sin %; (40)

,Mn, MM

p1(z,0,r) =

where:
Pnm, 1(7") = An IJn(ktr) + Bnﬁlyn(ktr); (41)

in which k? = 2 — k2, ky = w/ct, kyy = mn /L, J,, and Yy,
are the first and second kind of Bessel functions respectively,
and A,, ; and B,, ; are the coefficients to be determined.
Similarly, the acoustic pressure at the interface between the
mechanical material and the external fluid can be expanded as

follows:
E Prm,o0(T) sin (nﬂ + %) sin mrz
2 L

o,Mn,m

po(z,0,b) = 5 (42)
where:
(43)

in which W2, is the vibration velocity of the outer surface
of the mechanical material. The superscript b represents the
outer surface radius of the mechanical material. Z,,,,,,, is the
self-radiation impedance of the corresponding mode, where
the mutual radiation impedance is neglected.

According to the equation of motion, the acoustic pressure
Pnm,o on the surface of a mechanical material can be written

as: -
Pnm,0 = ——— pnm,l(r) anm
wpy or b
The boundary conditions between the mechanical material
and the external fluid and between the mechanical material and
the shell are as follows: First, the sound pressure and vibration
velocity are continuous at the interface between the external
fluid and the mechanical material at » = b. Second, the vi-
bration velocity is continuous at the interface between the me-
chanical material and the shell at » = a, and the sound pressure
is equal to the reaction pressure p. of the mechanical material
on the shell. Then:

Pnm,0 = an Lpmm;

(44)

r= ba Pnm.,0 (7’) = pnm,l(r);
1 8pnm,O (’I") _ 1 8pnm,l (T) X
iwpy O iwpy  Or
1 1 apnm M (T)
= @ = ~ . 45
r=a, nm iwpnr or (45)

Substituting the sound pressure solution into the boundary
condition Eq. (45) we can obtain:

Ap 1T + BpiTh2 =05

Ap mTo1 + By T = —iwWy,,; (46)
where:
k
Tiy = ——J0(kib) Z2h, — Ju(K1b);
w1
k
Tiy = ——Y; (k1b) Z;h, — Yo (kab);
w1
kay o,
T = Jy (kva);
wpn
k
Toy = —2L V! (kpra). A7)
wpnr
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Table 1. Material properties and geometric dimensions of the cylindrical shell model.

Material | Length (m) | Radius (m) | Thickness(m) | Density (kg/m3) | Young’s modulus (Pa) | Poisson’s ratio | Damping
Shell Steel 3.8 1.2 0.008 7800 2.1ell 0.3 0.001
Table 2. Mechanical material parameters / (1 x 107) Pa. C 1 — 93139
11~ 50 A
E11 | Baa | B33 | Gia | Gaz | G31 | vo1 | vs1 | vs2 EyoEs3A\’
353 [ 249 | 1.89 | 115 | 118 | 1.12 | 024 | 031 | 059 o Vol + Usilas V12 + Usalis
12 = = ;
EaE33A Ey1 E33A
. . v Vo1 Vs v V1oV
This produces the system of equations: Ci3 = 51+ Va1V — 713 RaLgr 23;
Eq B33 A Ey1 B A
Co — 1 —vi3v31
|:T11 T12:| {An,lﬂ} _ { 0 } (48) 2= E11E33A ’
o1 Toa| | Bum —iwWg,, c V3o + V1231 V23 + V21V13
23 = =
E11E33A E11ExpA
.. 1 —vyov9;
The above equation is used to solve the unknown coeffi- Cs3 = NN
cients A, yr, By, a for the shell surface displacement W, .. 1122
. . . 1 — v1ave1 — vo3ga — V13031 — 2121132013
According to the formal solution of the sound pressure in the A= . (52)
E11E53 k33

mechanical material, the following relationship is further ob-
tained:

w

Pnm,1 A [T12Jn(k1a) - Tllyn(kla)] Wr(LLm7
T
. k
W2, = —— [Tiad),(k1b) — T11 Y, (k1b) We,s  (49)
P1AT

where At is the determinant value of the coefficient matrix
in Eq. (48). Substituting the radial displacement of the cylin-
drical shell with isotropic mechanical materials into Egs. (36)
and (37), the radiated sound power and radial mean square ve-
locity can be obtained, which allows for the acoustic vibration
characteristics of the cylindrical shell with isotropic mechani-
cal materials to be analyzed.

Furthermore, a finite element numerical model was estab-
lished and the acoustic-vibration characteristics were com-
pared with those obtained by two analytical methods. In gen-
eral, the stiffness matrix of an elastic material can be written
as:

Cii Ci2 Ciz O 0 0

Cia Cy Cas 0 0 0

1 _|Ciz Ca3 Cs3 0O 0 0
[C”} 10 0 0 Cu 0 0 (50)

0 0 0 0 Css 0

0 0 0 0 0 Ces

In the formula, the 1st, 2nd, and 3rd principal directions of
the stiffness matrix correspond to the radial r, circumferen-
tial ¢, and axial z directions of the mechanical material. The
stiffness matrix is converted into the flexibility matrix and the
parameter transformation relationship is given as:

r 1 v % T
B Eqq ?33 0 0 0
Vi3 __ Va3 —_ 0 O 0
— E11 Eao E3s3 .
5] 0 0 0 & 0 0 3 G
0 0 0 0 & 0
0 0 0 0 0 &=

Given the tensile modulus, Poisson’s ratio and shear modu-
lus of the material, the stiffness matrix of the elastic material
can be calculated according to Eq. (52). Furthermore, analyti-
cal and numerical methods were used to calculate the radiated
sound power of the cylindrical shell covered with anisotropic
mechanical materials, respectively, to verify the effectiveness
of the analytical model of acoustic-vibration characteristics.
Table 1 gives the material properties and geometric dimensions
of the cylindrical shell model, and the material parameters of
the mechanical material are shown in Table 2. Among them,
the mechanical material is the same length as the cylindrical
shell, the density is 971.2339 kg/m3, the thickness is 0.02 m,
and the loss factor is set to 0.25.

A numerical model of a cylindrical shell with anisotropic
mechanical materials is established, as shown in Fig. 2. The
structure is immersed in an infinite water area. The material
properties and geometric parameters of the cylindrical shell
and mechanical materials are shown in Tables 1 and 2, where
the rigid cylindrical baffles connected at both ends of the shell
are of the same length as the shell and have the same mate-
rial properties as the shell. The shell is modeled using shell
elements, and the mechanical material and rigid cylindrical
baffles are modeled using solid elements. Simply supported
boundary conditions are applied at both ends of the shell, and
the vibration displacement of the rigid baffle is set to zero. The
cylindrical shell is immersed in water and a radial point ex-
citation force is applied in the middle of the shell surface. A
perfectly matched layer (PML) boundary condition is applied
at the outer boundary of the fluid domain to simulate the ane-
choic termination of the output wave.

For uniform mechanical materials, when the frequency is
low, the longitudinal wave effect is the main one. At this
time, the mechanical material can be approximately regarded
as a fluid, that is, the effect of shear waves can be ignored.
In fact, the mechanical material has interaction forces on the
cylindrical shell in the radial, circumferential and axial direc-
tions. Therefore, the acoustic and vibration characteristics of
isotropic mechanical materials based on fluid equivalence and
anisotropic mechanical materials based on state space vectors
are compared here. The radiated sound power of the cylin-
drical shell coated with mechanical materials under fluid-solid
coupling is solved by analytical and numerical models. The
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Figure 2. The model for laying anisotropic mechanical material cylindrical shell.
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Figure 3. Verification of the accuracy of the shell modeling method.

results are shown in Fig. 3. Among them, the black solid line
represents the numerical solution of the cylindrical shell with
anisotropic mechanical material calculated using the finite ele-
ment method, the red dotted line represents the analytical solu-
tion of the anisotropic mechanical material based on the state
space vector, and the blue dotted line represents the radiated
sound power of the analytical model of the isotropic mechani-
cal material obtained based on fluid equivalence.

As can be seen from Fig. 3, the equivalent of the anisotropic
mechanical material shell based on the state space is closer to
the finite element result and has higher accuracy. However,
due to the influence of boundary conditions in theory and sim-
ulation and the neglect of the influence of mutual radiation,
there are certain errors in the theoretical and simulation results
in the entire frequency band. Overall, the analytical model of
the cylindrical shell with anisotropic mechanical materials can
reflect its true characteristics and can be used for subsequent
analysis and prediction of the transmission law of radiation
noise of the cylindrical shell with anisotropic mechanical ma-
terials.

4. REGULAR ANALYSIS

4.1. Mechanical Material Parameters Are
Negative

By introducing the design concept of metamaterials, the ma-
terial properties of the laying layer are designed to be material
parameters that can produce negative properties. Elastic waves
become evanescent waves that cannot propagate in the fre-
quency range of negative numbers. The influence of negative
mechanical material parameters on the radiation noise charac-
teristics of cylindrical shells of laying anisotropic mechanical
materials is further analyzed. The material parameters in Ta-
ble 2 are selected as the original parameters, among which the
three tensile moduli are radial, circumferential, and axial ten-
sile moduli, corresponding to E'i1, E99, and E33, and the three
shear moduli are the shear moduli in the r¢, ¢z, and zr di-
rections, corresponding to G12, G23, and G31. After changing
the tensile modulus parameters, the material parameters that
produce negative properties can be expressed as:

—w? + wf

E,=F
p 0_w2+w%7

wp = 27 fp. (53)

In the formula, F, and Ej represent the negative material
parameters and original parameters after design, respectively,
wp0 and w;, are poles and zeros, respectively, and the two sat-
isfy the relationship: w, < w,. fp is the regulating factor of
the material parameters, and its physical meaning represents
the resonant frequency.

Before applying negative material parameters to analyze the
transmission characteristics of elastic waves, the control law
of the regulating factor on the negative material parameters is
first analyzed. Taking the circumferential tensile modulus Eao
as an example, the control law of the regulating factor f,, on
the designed negative material parameter Foy), is studied, as
shown in Fig. 4.

Figure 4 shows the variation of the tensile modulus Fo),
with the control factor f,,. It can be found that the tensile mod-
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Figure 4. Changes of the real part of the tensile modulus with the control
factor fp.

80

60 -

40+

20+ —original |

- = fp=42Hz

50 100 150 200
Frequency [Hz]

Radiated sound power [dB]

Figure 5. Effect of introducing negative material parameter E22;, on radiated
sound power.

ulus produces a resonance effect at the frequency correspond-
ing to the control factor f,, and a negative region appears within
a certain frequency range. By changing the control factor f,,
the resonance effect of the real part of the tensile modulus and
the negative attribute region appear at the corresponding fre-
quency position.

The circumferential tensile modulus F9o of the mechanical
material is designed as the negative material parameter Foop,
and the comparison results of the radiated sound power of
the cylindrical shell laid with anisotropic mechanical material
when the circumferential tensile modulus is Eyg, and Fo re-
spectively are obtained, as shown in Fig. 5.

As can be seen from Fig. 5, when the material parameters of
the mechanical material are designed to be negative, the radi-
ated sound power of the cylindrical shell laid with anisotropic
mechanical materials is significantly reduced within the target
frequency band. This phenomenon can be explained by the in-
fluence of negative material parameters on elastic waves: by
analogy with the concept of metamaterials, the material pa-
rameters are designed to be negative, and the imaginary part of
the elastic wave is not zero within the target frequency band,
that is, an evanescent wave. At this time, the elastic wave gen-
erated by the structural vibration cannot propagate outward,
which significantly reduces the radiated sound power of the
cylindrical shell.

Figure 6. Radiated sound changes with the negative material parameter F22,
control factor fp.
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Figure 7. Radiated sound changes with the negative material parameter F11,
control factor fp.
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Figure 8. Radiated sound changes with the negative material parameter £33,
control factor fp.

Next, the influence of the control factor f, of the negative
material parameter of the mechanical material on the radiated
sound power was further analyzed. The control factor f, was
set to 42 Hz, 79 Hz, and 173 Hz for the resonance frequency
of the radiated sound power, and the corresponding radiated
sound power results were obtained, as shown in Fig. 6. With-
out loss of generality, the radial and axial tensile moduli E;;
and F33 in the mechanical material were also designed as neg-
ative parameters, and the radiated sound power curves of the
cylindrical shell at different control factors f, were obtained,
as shown in Figs. 7 and 8.

It can be seen from Fig. 6 that by setting the negative ma-
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terial parameter control factor f, at the target frequency, the
bandgap generated by the negative parameter can effectively
reduce the radiated sound power. The same conclusion can
be drawn from Figs. 7 and 8. By designing the radial ten-
sile modulus and axial tensile modulus in the material param-
eters to negative numbers, the radiated sound power in the fre-
quency range corresponding to the control factor f,, can be sig-
nificantly reduced, achieving effective suppression of radiated
noise.

4.2. Mechanical Material Parameters Are
Complex Numbers

When the material parameters are designed as negative num-
bers, a bandgap can be generated at the target frequency and
the propagation of elastic waves can be effectively suppressed,
thereby achieving the effect of reducing the radiated sound
power. However, although this method can effectively reduce
the radiated noise of the target frequency, it will produce higher
secondary resonance peaks on both sides of the frequency,
thereby weakening the suppression effect of the radiated noise.
Considering that in the analysis of the influence of material pa-
rameters on the characteristics of elastic waves, the resonance
intensity near the target frequency can be mitigated by design-
ing it as a complex number. Therefore, considering design-
ing the material parameters of the mechanical material as a
complex number, that is, introducing the control factor 3, and
further analyzing the influence of the control factor 3 on the
radiated sound power, the material parameters of the mechan-
ical material can be further written in the form of a complex
number, expressed as:

—w? + 2iBw,w + w?
—w? + 2ifwyw + w2’

E,=Ey wp = 27 fp; 54)

in which  is the newly introduced control factor of material
parameters, and its physical meaning is expressed as loss fac-
tor.

Similarly, taking the circumferential tensile modulus EF5; as
an example, the control law of the regulation factor /3 on the de-
signed composite material parameter oo, is studied, as shown
in Fig. 9.

Figure 9 shows the variation of the tensile modulus FEoo),
with the control factor 3. At this time, f, = 42 Hz remains
constant. It can be found that as the control factor 3 increases,
the resonance effect in the real part of the tensile modulus
gradually weakens, which is manifested as the resonance peak
changes from sharp to gentle. In addition, the peak value of the
imaginary part of the tensile modulus also gradually decreases,
and its non-zero range gradually widens.

Therefore, the circumferential tensile modulus E55 of the
mechanical material is designed as a complex number, and the
comparative results of the radiated sound power of the cylindri-
cal shell when the circumferential tensile modulus has different
regulation factors (3 are analyzed, as shown in Fig. 10.

As can be seen from Fig. 10, by increasing the complex ma-
terial parameter control factor 3, although the trough of the ra-
diated sound power generated by the bandgap at the target fre-
quency has a certain increase, the secondary resonance peaks
generated on both sides of the frequency have been signifi-
cantly reduced, and the overall control effect of the radiated
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Figure 9. Changes of tensile modulus with control factor 3: (a) real part and
(b) imaginary part.

sound power of the cylindrical shell laid with anisotropic me-
chanical materials has been improved.

Similarly, the radial tensile modulus £'; and the axial ten-
sile modulus E33 of the mechanical material are designed as
complex numbers, and the cylindrical shell radiated sound
power curves corresponding to different control factors /3 are
obtained, as shown in Figs. 11 and 12.

It can be seen from Figs. 11 and 12 that by designing the ra-
dial and axial tensile moduli as complex numbers and increas-
ing the control factor S, the secondary resonance peaks on both
sides of the target frequency can be reduced and the overall
control effect of the radiated noise at the target frequency can
be effectively improved.

The comprehensive research results show that by designing
the radial, axial and circumferential tensile moduli in the mate-
rial parameters as negative numbers, the radiated sound power
in the frequency range corresponding to the control factor f,
can be significantly reduced, and the propagation of radiated
noise in a specific frequency band can be controlled. After in-
troducing 3, the radial, axial and circumferential tensile mod-
uli are designed to be complex numbers, which can reduce
the newly generated secondary resonance peaks on both sides
of the bandgap range and achieve effective suppression of the
overall radiation noise.
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Figure 10. Radiated sound changes with the complex material parameter
Es32y control factor 3.
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Figure 11. Radiated sound changes with the complex material parameter
E11y control factor 3.
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Figure 12. Radiated sound changes with the complex material parameter
E33y, control factor 3.

5. CONCLUSIONS

Based on three-dimensional elastic theory and state space
vector method, this paper depicts a modeling method for the
acoustic vibration characteristics of cylindrical shells with
anisotropic mechanical materials. By analyzing the radiation
noise characteristics of the finite element model and the analyt-
ical model, the accuracy of the theoretical solution of cylindri-
cal shells with anisotropic mechanical materials was verified.
Then, the material parameters of the mechanical material were
changed to negative or complex numbers, and the influence
on the radiation noise transfer characteristics was analyzed.
Through the design of metamaterials, the method and mecha-

nism of achieving low-frequency vibration and noise reduction
of cylindrical shells were revealed, which provides guidance
for the further design of adjustable mechanical materials.
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